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Abstract 

We present a new and considerably improved version of RoAM (Reconstruction 
of Ancient Methylation), a flexible tool for reconstructing ancient methylomes 
and identifying differentially methylated regions (DMRs) between populations. 
Through a series of filtering and quality control steps, RoAM produces highly reliable 
DNA methylation maps, making it a valuable tool for paleoepigenomics studies. We 
apply RoAM to pre-and post-Neolithic transition Balkan samples, and uncover DMRs 
in genes related to sugar metabolism. Notably, we observe post-Neolithic hyper-
methylation of PTPRN2, a regulator of insulin secretion. These results are compatible 
with hypoinsulinism in pre-Neolithic hunter-gatherers.
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Background
Identifying changes in gene expression levels is a powerful tool to study evolution-
ary shifts and adaptations. Specifically, many efforts have been directed to identifying 
changes in gene regulation along the human lineage [1–3]. The rise of ancient DNA 
(aDNA) offers new ways to study regulatory changes that shaped modern humans and 
might have affected our recent evolution. Given that changes in gene regulation are dif-
ficult to read directly from the DNA sequence, and that RNA rarely survives in ancient 
remains, DNA methylation stands out as the best proxy of ancient gene expression lev-
els [2, 4]. DNA methylation, which in mammals affects cytosines in the context of CpG 
positions, is a key epigenetic mark that is tightly associated with gene expression lev-
els [5]. Incidentally, unlike other epigenetic marks such as histone modifications, DNA 
methylation is highly stable and remains on aDNA for extended periods [6].

More than a decade ago, we and others developed computational methods for recon-
structing premortem DNA methylation patterns from aDNA [7, 8]. These techniques 
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used the fact that deamination – the main chemical degradation of aDNA – turns meth-
ylated cytosines into thymines and unmethylated cytosines into uracils [6]. In prepar-
ing the aDNA for sequencing, a treatment with uracil-specific excision reagent (USER) 
is often used [6], generating an asymmetry between methylated and unmethylated 
cytosines, which can be used to distinguish between them by carrying out statistical 
analysis of the number of C → T  transitions in CpG positions. A high rate of C → T  
indicates premortem hypermethylation, while the converse indicates hypomethylation. 
These pioneering methods have not only opened avenues for exploring epigenetic regu-
lations in ancient samples, but also enabled the reconstruction of genome-wide meth-
ylation maps and the identification of differentially methylated regions (DMRs) between 
ancient samples. These works founded the field of paleoepigenetics, which provided sig-
nificant insights into various aspects of human evolution [2, 4, 9].

Several of these aDNA reconstruction algorithms were published as tools, including 
RoAM [8], epiPALEOMIX [10], and its successor DAMMET [11]. However, RoAM was 
distributed as Matlab code, and its use was limited. DAMMET, which employs a maxi-
mum likelihood estimation to calculate methylation levels based on the C → T  transi-
tion counts, is the most recent tool, but has several limitations. First, it is assumed that 
all four nucleotides have the same frequency of 0.25, ignoring GC content biases. Spe-
cifically, the GC content of the human genome is known to be 40.9% [12]. Second, it 
is assumed that there is an equal probability of 1/7 for each dinucleotide that can be 
read as a CpG due to a mutation, which does not align with established mutation rates 
in humans [13, 14]. Notably, mutations are not uniformly distributed, with C → T  
mutations being particularly prevalent [15]. Third, the estimation procedure includes 
cytosines outside of a CpG context, which are assumed to be unmethylated. However, 
some small levels of non-CpG methylation are known to exist [16], especially in embry-
onic cells and specific mature cell types such as neurons. Not much is known about the 
prevalence and significance of non-CpG methylation in tissues that are present in the 
fossil record, particularly bones and teeth. This, combined with the assumption that the 
deamination rate of cytosines in non-CpG context is identical to that of cytosines within 
CpG context, can introduce bias into the reconstructed map. Indeed, previous works 
showed that methylation maps provided by DAMMET show more hypomethylation 
than expected [17, 18].

Moreover, DAMMET generates methylation maps, but does not compare them to 
identify DMRs. RoAM, on the other hand, does include a method to detect DMRs, 
but could originally do so only between pairs of samples. As the number of published 
aDNA samples continues to grow, the detection of DMRs between large groups of sam-
ples has become desirable, as they have the potential to unveil DNA methylation differ-
ences between populations, within the same population across different time points, and 
between closely related species.

Here, we present a new python version of RoAM (Reconstruction of Ancient Methyla-
tion), which removes many of the aforementioned limitations. It is feature-rich, flexible, 
easy to use, and its code is freely available. It allows for the generation of premortem 
genome-wide aDNA methylation maps, as well as the detection of DMRs between 
groups of samples. The current version contains numerous improvements over the origi-
nal software, including novel methods for filtering out true C → T  mutations (Table 1). 
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RoAM does not use assumptions about nucleotide frequencies, and does not rely on 
cytosines outside of CpG context.

To demonstrate the capabilities of RoAM, we reconstructed the methylomes of 14 
samples from the Balkans and detected DMRs between pre-Neolithic specimens and 
post-Neolithic transition ones. As expected from the short time span separating these 
populations, we detected only four DMRs with modest levels of methylation change. 
However, the genes that are associated with these DMRs might hold clues to nutritional 
changes that occurred during the Neolithic transition. Notably, we provide evidence that 
PTPRN2, which is involved in insulin response to glucose stimulus, is overexpressed 
in post-Neolithic transition individuals, as expected for high carbohydrate diet. Meth-
ylation changes were also found in EIF2AK4, a sensor for amino acid deprivation that 
also regulates insulin, and SLC2A5, the main fructose transporter. In total, these find-
ings may provide clues to regulatory changes that might have accompanied the major 
changes in diet and lifestyle that ensued following the Neolithic transition.

Results
Validations to RoAM

Given the changes introduced in the new version (Fig. 1, Table 1), we wanted to carry out 
validation tests, similar to those that were conducted in the original RoAM publication 
[8]. First, we classified all CpG position in the modern human reference genome into 
ten bins, based on their methylation level in present-day bone sample. Then, we com-
puted the mean C → T ratio in each bin for an ancient sample. As expected, we observe 
high correlation (R > 0.91, Fig. 2A), corroborating the fact that C → T ratio is predictive 
of methylation level. Second, we produced a heatmap showing the joint histogram of a 
reconstructed sample and a modern bone (Fig. 2B), demonstrating high match between 
reconstructed and measured methylation.

Third, we used the χ2 statistic to compare the histograms of reconstructed methylation 
maps produced by RoAM and DAMMET to a measured bone methylation map that was 
not used as a reference during the reconstruction process. Whereas χ2

RoAM = 7 · 105 , the 
same statistic for DAMMET was one order of magnitude larger, χ2

Dammet = 2.53 · 106, 
indicating larger distance between the histograms (Fig. 2C).

Finally, we compared the methylomes of both reconstructed and present-day bone 
samples to that of osteoblasts, lung, pancreas, and bladder, all taken from the methyl-
ation atlas of Loyfer et  al. [19]. We focused on the top 1% of CpG positions with the 

Table 1  Main differences between the old and new version of RoAM

Feature Old version (2014) New version (2025)

DMR detection between two individual samples  ✔  ✘
DMR detection between two groups  ✘  ✔
Linear methylation reconstruction  ✔  ✔
Sigmoid and histogram matching methylation 
reconstruction

 ✘  ✔

Can be operated from the command line  ✘  ✔
Code language MATLAB Python

Method for mutation removal Simple thresholds Mixture of distributions model
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highest variance on chromosome 1, and calculated pairwise χ2 distances. The result-
ing distance matrix, presented as a dendrogram in Fig.  2D, reveals a strong similarity 
between the two bone samples, which cluster closely with osteoblasts, as expected. 
Combined, these validations show that the reconstructed DNA methylation signal shows 
all the expected features of a present-day human bone methylation map.

Case study: the Neolithic transition

Epigenetics in general, and DNA methylation in particular, may respond to changes in 
internal or external conditions [20, 21]. Research has unveiled connections between 
numerous environmental factors and alterations in DNA methylation [22–25]. Conse-
quently, even short bouts of environmental or lifestyle transitions may make epigenomic 
imprints that can be read.

Fig. 1  The RoAM pipeline is split into two parts. In Part I, RoAM starts with BAM files of ancient genomes, 
and reconstructs the individual methylation maps. In Part II, RoAM detects differentially methylated regions 
(DMRs) distinguishing two groups of ancient samples (created with Biorender)
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Motivated by this, we decided to investigate potential epigenetic imprints of the 
Neolithic transition using RoAM. The Neolithic transition is a pivotal milestone 
in human history, representing a significant shift in lifestyle, from primarily that 
of hunting and gathering to a more sedentary one based on agriculture and ani-
mal husbandry. Pre-Neolithic humans typically lived nomadic life, relying on wild 
plants and animals for sustenance. The adoption of agriculture and domestication 
practices led to significant changes in diet, disease load, levels of physical activ-
ity and many other aspects of life. These changes might have been accompanied 
by biological and physiological changes (e.g. [26]). Emerging evidence suggests that 
DNA methylation in some genomic loci is sensitive to such lifestyle factors [27, 28]. 
Hence, we decided to compare the ancient epigenomes of pre-Neolithic to those of 
post-Neolithic transition.

Ancient individuals sequenced to high coverage are still not abundant, and tend 
to represent very different populations. Comparing pre- to post-Neolithic transi-
tion individuals across many different populations potentially adds confounding 
factors. To address this, we limited our study to 14 high-coverage individuals that 
come from the same region, the Balkans. Nine are pre-Neolithic individuals, and 
five are post-Neolithic transition ones (Table  2). Genomic data of these ancient 

Fig. 2  A CpG positions were categorized into ten distinct bins based on their DNA methylation levels 
as directly measured in present day human bone. Average CT ratio in an ancient sample (Denisova) was 
calculated for each bin, and correlation was computed. B Methylation heatmap of an ancient sample 
(Denisova) compared to a smoothed modern one (data taken from chromosome 19). High concordance is 
observed between these samples. C Histograms of methylation levels of ancient samples (chromosome 1 
only). Ancient sample I1116 is reconstructed by the new version of RoAM (blue), the old version (orange) and 
by DAMMET (green). Two modern bone samples are shown. One (yellow) was used as a reference in RoAM, 
and another (purple) that was not used in RoAM. D Dendrogram based on pairwise χ.2 distances between 
methylomes of reconstructed and present-day bone samples and four reference tissues (osteoblasts, lung, 
pancreas, bladder), using the top 1% most variable CpG sites on chromosome 1
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individuals were downloaded from the Allen Ancient DNA Resource (AADR) avail-
able at https://​doi.​org/​10.​7910/​DVN/​FFIDCW [29]. Notably, petrous bone was the 
source for DNA extraction in all 14 samples, further reducing potential effects of 
confounding factors.

Two samples, I1116 and I5725 are dated to a later period compared to the other post-
Neolithic transition samples. While increasing the sample size, we figured their inclu-
sion might introduce a bias to the analysis. Indeed, as will be shown below, these two 
samples sometimes show methylation patterns that are more distant from the other 
post-Neolithic transition individuals. We therefore repeated the analysis twice, with and 
without these two samples.

We applied RoAM to reconstruct methylation for each sample [8] and then detected 
DMRs between these two groups. Given the short time span separating the two groups, 
we expected to find only small methylation changes between them. We have therefore 
set the minimum methylation difference between groups (the � parameter, see Meth-
ods) to the very low value of 0.1.

Methylation patterns can exhibit significant variations between two distinct tissues 
within the same individual [30]. As a result, much of the research in the field of paleoe-
pigenetics has concentrated on the evolutionary aspects of the skeletal system [31, 32]. 
The relevance of skeletal DMRs to changes in lifestyle following the Neolithic transition 
is debated. However, we have shown that there are loci in the genome where differential 
methylation in one tissue may reflect differential methylation in another tissue, as long 
as the methylation change occurs early during embryogenesis [4]. To help in focusing on 

Table 2  List of samples used in this work. Sample IDs are according to the Allen Ancient Genome 
Diversity Project

Sample ID Group Sample 
age 
(kya)

Location Coverage Effective 
coverage

% genome 
reconstructed

I1507 Pre-Neolithic 7.7 Hungary (Tiszaszolos-
Domaháza)

22.42 30.32 98.2

I4873 Pre-Neolithic 7.9 Serbia (Vlasak) 25.76 38.42 98.1

I4875 Pre-Neolithic 8.5 Serbia (Vlasak) 21.48 29.35 98.1

I4877 Pre-Neolithic 8.5 Serbia (Vlasak) 27.44 38.75 98.1

I4878 Pre-Neolithic 7.8 Serbia (Vlasak) 25.3 38.47 98.2

I4914 Pre-Neolithic 8.1 Serbia (Vlasak) 24.85 37.4 98.1

I5233 Pre-Neolithic 8 Serbia (Padina) 23.55 30.55 98.1

I5235 Pre-Neolithic 10.8 Serbia (Padina) 25.61 32.2 98.1

I5236 Pre-Neolithic 10 Serbia (Padina) 26.91 35.07 98.1

I1116 Post-Neolithic transi-
tion

1 Serbia (Gomolova) 26.97 41.87 98.3

I1496 Post-Neolithic transi-
tion

7 Hungary (Apc-
Berekalya I)

29.96 43.25 98.2

I2520 Post-Neolithic transi-
tion

5.1 Bulgaria (Dzhulyu-
nitsa)

24.47 40.17 98.1

I5077 Post-Neolithic transi-
tion

7 Croatia (Sopot) 27.79 41.8 98.2

I5725 Post-Neolithic transi-
tion

2.5 Croatia (Sv Kriz) 27.49 37.21 98.2

https://doi.org/10.7910/DVN/FFIDCW
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differential methylation that arose during such early developmental times, we crossed 
our results with published methylation data derived from blood samples of modern 
hunter-gatherers and farmers in Africa [33], where differentially methylated sites sep-
arating these population have been identified. We only considered genes that featured 
methylation changes in both bone and blood.

Our conservative analysis, using all five post-Neolithic transition samples, yielded four 
DMRs (Table 3). Three of the DMRs are located inside gene bodies and, interestingly, 
all four overlap CpG islands, suggesting a possible regulatory role of these methylation 
changes. The DMR with the highest Qmax (406.4), which was the only one to be detected 
when the two younger post-Neolithic transition samples have been removed, was found 
inside the gene body of the PTPRN2 gene (also known as IA-2β, Fig. 3A). PTPRN2 also 
harbors the third-highest number of differentially methylated sites in blood, separating 
modern African hunter-gatherers from farmers, with a total of 62 such sites. PTPRN2 
is a transmembrane protein present in dense-core vesicles and represents a major auto 
antigen of type 1 diabetes [34]. Previous works found that PTPRN2 has a key role in 
insulin secretion in response to glucose stimulus, and suppression or knocking down of 

Table 3  DMRs separating pre- and post-Neolithic transistion samples from the Balkan (ordered by 
Qmax—from largest to smallest)

Chrom DMR start 
(hg19)

DMR end 
(hg19)

Qmax # CpGs Gene 
overlapped

Pre-Neolithic 
methylation

Post-
Neolithic 
transition 
methylation

Mean 
methylation 
difference

7 157,405,128 157,407,252 406.4 145 PTPRN2 0.36 0.65 0.29

2 131,008,391 131,011,881 311.9 119 0.35 0.64 0.29

19 12,983,432 12,985,003 287.4 118 MAST1 0.50 0.77 0.27

15 40,266,418 40,269,319 255.8 79 EIF2AK4 0.40 0.74 0.34

Fig. 3  The DMR within the PTPRN2 gene. A Reconstructed DNA methylation of the 14 Balkan samples. 
The DMR (dashed vertical lines) distinguishes between post-Neolithic transition samples (upper lanes) and 
pre-Neolithic revolution ones (lower lanes). Methylation is color coded, from low methylation in yellow to 
high methylation in red. Lower lanes describe the genomic locations of CpG islands (CGIs) and genes. This 
DMR intersects a CpG island. B Expression level of the PTPRN2 gene as a function of the mean methylation 
within the DMR, in 22 modern human tissues
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this gene can impair this process [35–38]. Epigenetic regulation on PTPRN2 has been 
examined previously, and a DNA methylation change in a CpG site within this gene, 
which does not overlap with the detected DMR, has been associated with childhood 
obesity [39, 40].

To find the predicted effects of the DNA methylation changes on the expression level 
of this gene, we looked at the correlation between the methylation in this DMR and the 
expression of PTPRN2 across 22 tissues of present-day humans taken from the Road-
map dataset [41]. We found a significant positive correlation ( R = 0.65 , P = 8.8 · 10−4 ), 
suggesting that PTPRN2 was expressed in higher levels in post-Neolithic transition 
individuals (Fig. 3B). This implies lower insulin response to glucose stimulus in the pre-
Neolithic individuals. No significant correlation between methylation and gene expres-
sion was found for the other DMRs.

Another DMR was detected inside EIF2AK4 (also known as GCN2, Fig. 4A), a sen-
sor for amino acid deprivation and a regulator of lipid metabolism and gluconeogen-
esis [42, 43]. This kinase plays a crucial role in maintaining homeostasis during amino 
acid deprivation. When under a leucine-deprived diet, EIF2AK4 reduces insulin levels 
and increases insulin sensitivity [44, 45]. However, in mice consuming a high fat diet, 
the opposite effect is shown, where EIF2AK increases blood insulin levels and decreases 
insulin sensitivity [46]. Furthermore, EIF2AK4 is also implicated in diabetes, as its 
knockout in diabetic mice results in a decrease in serum fasting glucose and improved 
cardiac symptoms [47].

Fig. 4  Additional DMRs (bounded by dashed vertical lines) that distinguish between post-Neolithic transition 
samples (upper lanes) and pre-Neolithic ones (lower lanes). Methylation is color coded, from low methylation 
in yellow to high methylation in red. Lower lanes describe the genomic locations of CpG islands (CGIs) and 
genes. A-C The additional three DMRs detected in the analysis. D The DMR with the highest Qmax that did not 
pass significance threshold. All DMRs intersect CpG islands
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The third DMR was detected in the gene MAST1 (Fig. 4B), a kinase that plays a role 
in the central nervous system [48–50]. No relation of this gene to metabolism or any 
function that might be related to the Neolithic transition is currently known. The fourth 
DMR is not located on a promoter or a gene body (Fig. 4C).

Only four DMRs out of an original set of 155,693 had properties that meet the thresh-
olds set by the simulations to get an FDR below 0.05 (see Methods). Although not sta-
tistically significant, we noticed an interesting DMR that was very close to crossing the 
required thresholds. This DMR overlaps CpG island, and is located within the SLC2A5 
gene (also known as GLUT5, Fig.  4D), a major fructose transporter in the gut. Many 
works showed that the presence of fructose stimulation can enhance, even within hours, 
SLC2A5 expression in the small intestine of adult animals. The same is true of neona-
tal and weaning pups that do not normally consume fructose and have low levels of 
SLC2A5 expression in their intestines [51–56]. SLC2A5 is also associated with diabetes 
and obesity, as the gene is differentially expressed in insulin-sensitive tissues of patients 
with type 2 diabetes and in mouse models for diabetes and obesity, such as muscle [57] 
and fat tissues [58, 59].

Discussion
We introduce here RoAM, a user-friendly program designed to provide a complete anal-
ysis pipeline for computational reconstruction of ancient methylomes and the identifica-
tion of DMRs that distinguish ancient populations from each other. As the significance 
of evolutionary epigenetics is in the rise, RoAM proves to be a valuable tool for research-
ers seeking to integrate paleoepigenetic insights into their studies.

An advantage of RoAM is that new features are constantly added, gradually providing 
it with even more power. For example, a primary limitation of the reconstruction algo-
rithm is that it cannot work on low-coverage samples, as the counts of Cs and Ts may 
be too low to allow for reasonable standard error of the estimator. To overcome this, we 
have introduced the concept of pooling, where counts from many low-coverage sam-
ples from the same group are amalgamated to provide a methylation map that represents 
the entire population [60]. Pooling has already been integrated into RoAM, making it a 
viable tool for analyzing methylation maps in populations with low-coverage samples.

There are several limitations of the current software. First, the current implementation 
does not allow comparisons across more than two groups. Second, the code is limited to 
detecting DMRs between two groups that are exclusively composed of ancient samples. 
Ideally, we would like to integrate modern samples in the analyses, such that each group 
can potentially consist of a mixture of modern and ancient samples. Third, the algorithm 
exclusively performs methylation reconstruction on samples subjected to USER treat-
ment [6]. However, this treatment is not universally performed in aDNA library prep-
aration. Finally, it does not account for difference in deamination rates along the read 
[6]. We are currently actively working on developing solutions for all these limitations. 
RoAM will continue to be maintained and updated, with each solution promptly imple-
mented in the code, providing RoAM with the capability to handle a growing number of 
samples of different types.
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To showcase the algorithm, we conducted methylation reconstruction on 14 pre- and 
post-Neolithic transition samples from the Balkans, and identified four DMRs that dis-
tinguish between them. The genes associated with these DMRs provide insights into 
understanding dietary changes that were induced by the Neolithic transition. Two clas-
sic hypotheses claim that hypoinsulinism in pre-Neolithic hunter gatherers provided an 
adaptive advantage. The carnivore connection hypothesis [61, 62] suggests that hunter-
gatherers diet was high in protein and low in carbohydrates, and that in such conditions, 
insulin resistance would confer an evolutionary advantage, as it allows redirection of 
glucose to specific requirements such as embryonic development and brain functions. 
The thrifty genotype hypothesis [63] suggests that hypoinsulinism was a preferred strat-
egy for storing food in times of food scarcity due to the instability in food sources. Glu-
cose is specifically important for fetal development and to the function of the Brain, and 
therefore hypoinsulinism can be a good adaptation to accommodate and supply the body 
needs when experiencing low or unstable glucose availability. In line with these claims, 
previous studies reported that hunter-gatherers from the north-western Kalahari display 
lower levels of blood insulin, while genetically similar communities that have adopted 
a sedentary lifestyle for 15 years show an increase in insulin levels during this period 
[64, 65]. Additional work showed that short term consumption of a paleolithic diet can 
decrease insulin secretion [66]. These works indicate hypoinsulinism in hunter gather-
ers, and specifically at lower insulin secretion. Our most pronounced DMR resides in 
PTPRN2, suggesting overexpression of this gene in post-Neolithic transition individuals 
compared to pre-Neolithic ones. Given its role in insulin secretion in response to glu-
cose, this finding lends further credence to the claim that hunter-gatherers experienced 
hypoinsulinism. Further evidence for methylation changes in PTPRN2 that correlate 
with hunting and gathering lifestyle can be found in an independent study that com-
pared methylation levels in modern hunter gatherers and genetically related farmers in 
Africa [33]. In this study, PTPRN2 stood out as the gene with the third-highest number 
of differentially methylated sites, amounting to a total of 62 sites.

Another DMR lies with the EIF2AK4 gene. EIF2AK4 regulates insulin level and sensi-
tivity in response to varied dietary components, and specifically during amino-acid dep-
rivation. Changes in the expression level of this gene may be linked to the dietary shift 
during the Neolithic transition. A plausible explanation for this change could be attrib-
uted to food scarcity, potentially resulting in the deprivation of certain amino acids for 
hunter-gatherers.

We also found a DMR within the SLC2A5 gene. This DMR is filtered out because of 
our very strict criteria, but it was just below the threshold, so we decided to discuss it 
here, as it might be potentially related to the Neolithic dietary transition. SLC2A5 is a 
fructose transporter, whose expression levels change when fructose consumption is 
increased. Our data do not allow us to determine the sign of the correlation between the 
methylation in this DMR and the gene expression, hence we cannot conclusively deter-
mine whether the methylation changes are associated with up or down regulation of this 
gene in post-Neolithic transition times. However, we do observe a notable methylation 
change in this gene, that warrants further experimental examination.

It should be recognized that the DMRs we detect here likely represent just a small 
minority of the methylated changes that accompanied the Neolithic transition. First, we 
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have used very strict filtering criteria, increasing precision on the expense of sensitiv-
ity. Second, we are limited by a small sample size. And third, the use of DNA methyla-
tion maps from bones means that we are able to identify only those methylation changes 
that occurred very early during embryogenesis, and simultaneously affect multiple tis-
sues [4]. We will not be able to observe tissue-specific methylation changes, where the 
methylation change is not shared with bone. We anticipate the existence of such tissue-
specific methylation changes, particularly in genes associated with immune functions 
and metabolism.

Methods
RoAM performs two main tasks. First, it reconstructs the methylation map of ancient 
samples. Then, it compares groups of samples to detect DMRs between them (Fig. 1). In 
the following, we thoroughly describe these two parts.

Part I. Reconstructing premortem ancient DNA methylation

The main input for this part is a BAM file of an ancient individual. Each BAM file is 
analyzed through five consecutive steps (Fig.  1): (1) basic processing of the BAM file; 
(2) diagnosis step to automatically determine filtering parameters; (3) carrying out the 
filtering to remove non-informative CpG positions; (4) estimating the deamination rate; 
and (5) reconstructing the premortem DNA methylation.

In addition to the BAM file, RoAM requires several input parameters that instruct it 
how to process the specific sample. Although not mandatory, it is highly recommended 
to provide a reference present-day DNA methylation map generated from the same tis-
sue from which the aDNA was extracted. The reason for this is that such a reference 
allows for more accurate estimation of the deamination rate and methylation recon-
struction. We provide such reference for present-day human bone aligned to hg19, see 
https://​carme​lab.​huji.​ac.​il/​data.​html. A full description of all input parameters can be 
found in the README file in the GitHub page of RoAM, https://​github.​com/​swidl​er/​
roam-​python [67].

RoAM provides the user with two outputs that contain the reconstructed methylation 
map. One is a simple BED file, and the other is a python object that also contains all 
parameters that were used by the algorithm. This python object is later required for the 
DMR detection part.

Step I: BAM file processing

RoAM reads all relevant information from a BAM file into a python object. This object 
stores some descriptive characteristics of the sample, such as the sample name, species 
and library preparation method. In addition, it holds relevant summary statistics of the 
sequencing data, specifically nucleotide counts in each CpG position. At later steps, 
more information is stored in this object, such as the filtering parameters, the estimated 
deamination rate, and the reconstructed methylation values. BAM files are processed, 
one chromosome at a time, using Python’s pysam module (https://​github.​com/​pysam-​
devel​opers/​pysam). During this step, RoAM filters out low quality reads, and computes 
base counts for each position in a way that depends on the library preparation method. 
For single-strand libraries, each strand is treated independently, and only C → T  

https://carmelab.huji.ac.il/data.html
https://github.com/swidler/roam-python
https://github.com/swidler/roam-python
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
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transitions are relevant. For double-strand libraries, complementary G → A events 
along the opposite strand are counted as well.

This step is the most time-consuming part of the pipeline. However, it needs to be 
executed only once per sample, after which the saved object can be re-used.

Step II: diagnosis

Filtering in RoAM is aimed at removing CpG positions whose cytosine and thymine 
counts may be spurious or uninformative to the reconstruction process. We identify two 
groups of such CpG positions. First, some positions show suspiciously high coverage 
that suggest they are a result of PCR duplications. Second, some positions show C → T  
counts suggestive of premortem mutations rather than deamination.

RoAM runs a diagnostic procedure that automatically suggests parameter values that 
should be used during filtering. The user can manually override these suggestions.

Identifying PCR duplications

Let ti and ci be the counts of thymines and cytosines, respectively, in CpG position i , 
and let ni = ti + ci be the total count in this position. As a first step, we use a crude 
outlier removal process to remove positions with extreme values of ni . Then, we use 
a more refined method to remove additional outlying positions. For the first step, we 
compute the 25th and 75th percentiles of all ni values, denoted p25 and p75 , respectively. 
We compute the interquartile range as r = p75 − p25 , and remove all positions where 
ni > p75 + s · r . Here, s is a parameter called span, set by default to 5.

For the second step, let N (c) be the histogram of the remaining ni values, counting the 
number of CpG positions with coverage c . N (c) resembles normal distribution truncated 
at 1, and with a heavier right-tail. To account for the truncation, we use the following 
method to estimate the parameters of the distribution. Let cm be the coverage level that 
maximizes N (c) . Based on the three coverage levels cm − 1, cm, and cm + 1 , we estimate 
the parameters a, b, and c of the best-fitting binomial N (x) = ax2 + bx + c . We estimate 
µ , the mean of the normal distribution, as the point where this function is maximized, 
µ = −b/2a . We call the maximum value of the function N0 = N

(
µ̂
)
= −b2/4a+ c . To 

estimate the standard deviation, σ , we find the first bin in the histogram, b , such that 
b is greater than µ and for which N (b) ≤ t · N0 , where t is a parameter that is set by 
default to 0.1. The smaller t is, the more the approximation accounts for the heavy tail. 
Let f = N (b)/N0 be the ratio of these two bins. Then,

where N  is the total number of counts, N =
∑

cN (c) . Therefore, σ can be estimated 
using this ratio by

Given the estimates µ̂ and σ̂ , we further remove CpG positions that might be a result 
of PCR duplicates by filtering out all positions whose coverage exceeds a threshold cT , 

N (b) =
N

σ
√
2π

e
− (b−µ̂)2

2σ2 = f · N0 =
fN

σ
√
2π

,

σ̂ =
b− µ̂√
2ln

(
1/f

) .
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determined as the coverage that would yield an expected value of counts less than one. 
We find cT by solving for

giving

Removal of PCR duplicates is done by removing all positions with

Detecting C → T  mutations

C → T  Mutations are detected in two ways. As we detailed in past papers [8, 31], in 
aDNA that was sequenced using single-strand libraries, mutations can be distinguished 
from deamination by examining the opposite strand for G → A transitions.

Here, we developed an alternative technique, that is also applicable for aDNA 
sequenced using double-strand libraries. It is based on the analysis of the histogram H 
of ti and removing CpG positions with C → T  rates that are too high and likely repre-
sent a C → T  mutation. We examine each coverage level c , independently, and therefore 
can now assume that we are only looking at the N (c) CpG positions whose coverage is 
c . Denoting by p the probability of a C → T  transition, we assume that H represents 
a mixture of three binomial distributions: (1) homozygous mutations, where p1 ≈ 1 . 
(2) heterozygous mutations, where p2 = 0.5 . (3) non-mutated sites that went through 
deamination, where p3 ≈ 0.01 ; We use expectation maximization (EM) to estimate the 
p ’s and w ’s in the binomial mixture model (BMM):

where wk is the weight of the k’th distribution. The details of the EM algorithm can be 
found in Additional File 1, but the final threshold is given by

where the ⌈·⌉ operator means the closest integer from above. We then remove all CpG 
positions whose coverage is c and where

Step III: filtering

The filters outlined in Step II are used to determine which sites to remove. First, we clean 
PCR duplicates. This is done by setting a threshold cT and removing every site where 
ni > cT (see Eq. 1). Then, let i denote all the sites with a given coverage level c , where 

N

σ̂
√
2π

e
− (cT−µ̂)2

2σ̂2 < 1,

CT =

∣∣∣∣∣µ̂+ σ̂

√

2 ln

(
N

σ̂
√
2π

)∣∣∣∣∣.

(1)
ni > cT .

Pr(ti = t) =
∑3

k=1
wkB(t|c, pk),

kc = ⌈
ln

w2

w3
− cln2(1− p3)

ln
p3

1−p3

⌉,

(2)ti ≥ kc.
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c = 1, . . . , cT . We remove all sites for which ti ≥ kC (see Eq. 2), as they are suspected as 
true mutations.

For single-strand libraries, we add a filter on the G → A  transitions in the opposite 
strand. To this end, we set a maximum number of allowed A’s, aL , as well as a mini-
mum G → A ratio, Tm (default: 0.25). Then, we remove all sites where

After filtering, a merging procedure is applied to combine information from both 
Cs of the same CpG position (on opposite strands). The methylation state of these two 
Cs should be identical [68], thus merging the counts of Cs and Ts from both strands 
increases the amount of information obtained from each CpG position.

Step IV: estimation of deamination rate

The deamination rate is estimated using the same technique we have previously detailed 
[31], and is based on the C and T counts in CpG positions whose methylation in the 
modern reference is above a certain threshold, mh . This parameter should be close to 
one and is exactly one by default. As the maximum-likelihood estimator of the methyla-
tion in a site is

limiting ourselves to positions where mi = 1 lets us estimate the degradation rate by

In a case where a reference is not available, one can estimate the degradation rate by 
assuming knowledge of the global mean methylation in the sample, mg . Then, we esti-
mate the deamination rate by

where the sum is over all positions in the genomes.
This function also computes the local methylation rate for each chromosome, which 

allows testing for homogeneity of the deamination rate across chromosomes.

Step V: methylation reconstruction

By default, RoAM uses histogram matching to reconstruct the methylation maps by 
finding the non-linear transformation mi = f (ti/ni) that makes the histogram of mi as 
close as possible to that of a reference methylation map in a modern bone [60, 69], where 
mi is the estimated methylation at position i . By design, we obtain a histogram of meth-
ylation values which resembles the equivalent histogram from modern-day sample. It 
stands in contrast to DAMMET, which tends to show shifts towards low methylation.

(3)ai > aL and
ai

ai + gi
≥ Tm.

mi =
ti

πni
,

π̂ =
∑

ti∑
ni
.

π̂ =
∑

ti

mg
∑

ni
,
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Histogram matching serves as the default method for methylation reconstruction, 
but users may choose two other methods. One is the truncated linear transformation,

as described and used previously [31]. To achieve a smooth truncation, RoAM also offers 
a third method, called the logistic transformation, where

Given the typically small thymine counts in each CpG position, ti , RoAM recon-
structs methylation in windows of W  consecutive CpG positions ( W  is always set 
as an odd number, and the reconstructed methylation in the window is assigned to 
the middle position). The user may determine the window size they wish to use, but 
RoAM includes two methods to automatically determine the window size.

Probability‑based method

We require that the probability of observing no thymines in a window for a minimum 
methylation level m0 be less than p0 . This translates into

where t is the total thymine count in the window, and n is the total count of thymines 
and cytosines. Taking log of both sides we get

meaning that we have to have

in the window. If the window is covered by the average effective coverage, C , 
then n = WC . This translates into the following window size:

Relative‑error‑based method

We require that the relative error in estimating the methylation, when the true meth-
ylation is m0 , be lower than 1/k . Let the estimator for the methylation be

Then, its mean is

mi = max

(
0,min

(
1,

ti

πni

))
,

mi = tanh

(
ti

πni

)
.

Pr(t = 0) = (1− πm0)
n < p0,

n · ln(1− πm0) < lnp0,

n >
lnp0

ln(1− πm0)

W = ⌈
1

C
·

lnp0

ln(1− πm0)
⌉.

m =
t

πn
.
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and its variance is

We require that s(m)/E(m) < 1/k , hence

or

Again, using the average effective coverage, C , this translates into

The default that RoAM uses is the probability-based method.

Part II. DMR detection

Once reconstruction of methylation has been achieved for multiple samples, a second 
part of RoAM is designed to detect and statistically validate DMRs between two groups 
of samples. This process comprises the following steps (Fig.  1): (1) DMR detection 
between the two groups, (2) the use of simulations to adjust the parameters of the DMR-
calling algorithm to reach a desired level of false discovery rate (FDR), and (3) annota-
tion of the final list of DMRs. The algorithm provides a table with a list of all the DMRs, 
their location, annotation, and the methylation level in each of the samples, as well as the 
combined estimated methylation in each group.

Step I: DMR detection

Let us first examine a group of S samples. We assume that the methylation across mem-
bers of the group is homogeneous, and denote the common methylation value in win-
dow j as mj.

Let us look at sample i . We assume that the observed number of T bases in window j 
is binomially distributed, tij ∼ B(nij ,mjπi) , where πi is the deamination rate of the sam-
ple and nij is the sum of the Cs and Ts in each CpG in window j in sample i. The likeli-
hood of sample i is

and the log-likelihood

E(m) =
1

π
E

(
t

n

)
=

1

π
πm0 = m0,

s2(m) =
1

π2
V

(
t

n

)
=

πm0(1− πm0)

π2n
.

πm0(1− πm0)

π2m2
0n

<
1

k2
,

n >
k2(1− πm0)

πm0

.

W = ⌈
k2(1− πm0)

πm0C
⌉.

Lij =
(
nij

tij

)(
mjπi

)tij(
1−mjπi

)nij−tij
,
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where Bi is a term that is independent of mj . The total log-likelihood of all S samples in 
the group is

where B =
∑

iBi is a term independent of mj . The score function with respect to mj is:

where

We find the maximum of the likelihood by equating the score to zero and solving using 
the Newton–Raphson method. Details can be found in Additional File 2.

After computing m1,j and m2,j , the methylation levels in every genomic window for the 
two groups, we can compare the two using a similar approach to the one used in [31]. To 
this end, we define the two statistics

Here, � is a parameter of the algorithm, associated with the desired minimal meth-
ylation difference we wish to detect between the two groups. Next, we use a cumulative 
sum for ℓ+j  and ℓ−j  to identify DMRs, as described in [31]. In brief, we define the vectors 
Q+ and Q− of the same length as ℓ+j  and ℓ−j  , as

Q− is defined in an analogous way.
In DMRs where group 1 is hypermethylated compared to group 2, we will obtain 

a sequence of positive values for ℓ+j  resulting in an elevation in the values of Q+ . We 
define the DMR as the region [a, b] between the last zero Qa = 0 , and the highest value 
Qb = Qmax up to the next zero (31).

Each DMR is characterized by several properties, such as its genomic length, the num-
ber of CpG positions it harbors, and its Qmax . This allows for further filtering of DMRs, 
to achieve a desired false discovery rate (FDR), as explained in the next section.

Step II: simulations and FDR

We employ simulations to filter out DMRs in such a way that we achieve a desired 
FDR level. The detailed procedure can be found in our previous paper [31]. In short, 

ℓij = tij ln
(
mjπi

)
+

(
nij − tij

)
ln(1−mjπi)+ Bi,

ℓj =
∑S

i=1
tij ln(mjπi)+

∑S

i=1

(
nij − tij

)
ln(1−mjπi)+ B,

dℓj

dmj
=

∑S

i=1

tij

mj
−

∑S

i=1

(
nij − tij

)
πi

1−mjπi
=

Tj

mj
−

∑S

i=1

(
nij − tij

)
πi

1−mjπi
,

Tj =
∑S

i=1
tij .
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m1,j −m2,j −�

√
V (m1,j)+ V (m2,j)

,
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we imitate the deamination process in each sample by generating Ts using a bino-
mial process, where the coverage in each position and the deamination rate are kept 
constant for each sample. The methylation value in each position is determined in 
advance, and is kept constant across the samples from both groups, to model the null 
hypothesis of no methylation differences between the groups.

Subsequently, we apply the same DMR detection procedure to the simulated data and 
count the number of detected DMRs. This number represents the number of DMRs 
detected under the null hypothesis. Repeating this many times (typically 100 times), we 
may compute the expected fraction of false DMRs within our original list of DMRs. 
By default, we set an FDR threshold of 0.05, but this parameter can be adjusted by the 
user. Given that the simulated DMRs originate from the null hypothesis, they tend to be 
shorter and have smaller Qmax . Consequently, the algorithm applies a range of thresh-
olds for the minimum number of CpG sites and Qmax , looking for a combination that 
would achieve the desired FDR level. If multiple sets of parameters achieve this FDR 
level, we select the one that filters out the fewest of the original DMRs.

Step III: annotation

The final step of this part creates annotations of the final DMR list. Two types of 
annotations are currently implemented: associating DMRs with gene bodies and pro-
moters, and with CpG islands. Users are required to provide the location data (gene 
list and CpG island list). These files are provided in https://​carme​lab.​huji.​ac.​il/​data.​
html for hg19. By default, RoAM defines the promoter region of each gene as 5,000 bp 
upstream of the transcription start site (TSS) to 1,000 bp downstream, but this can be 
set by the user. In addition, annotation can be done against any list of genomic seg-
ments, inserted as a BED file.
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