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Abstract 
Identifying evolutionary changes in DNA methylation bears a huge potential for unraveling 
adaptations that have occurred in modern humans. Over the past decade, computational methods 
to reconstruct DNA methylation patterns from ancient DNA sequences have been developed, 
allowing for the exploration of DNA methylation changes during the past hundreds of thousands of 
years of human evolution. Here, we introduce a new version of RoAM (Reconstruction of Ancient 
Methylation), a flexible tool that allows for the reconstruction of ancient methylomes, as well as the 
identification of differentially methylated regions between ancient populations. RoAM incorporates 
a series of filtering and quality control steps, resulting in highly reliable DNA methylation maps that 
exhibit similar characteristics to modern maps. To showcase RoAM's capabilities, we used it to 
compare ancient methylation patterns between pre- and post-Neolithic revolution samples from the 
Balkans. Differentially methylated regions separating these populations are shown to be associated 
with genes related to regulation of sugar metabolism. Notably, we provide evidence for 
overexpression of the gene PTPRN2 in post-Neolithic revolution samples. PTPRN2 is a key regulator 
of insulin secretion, and our finding is compatible with hypoinsulinism in pre-Neolithic revolution 
hunter-gatherers. Additionally, we observe methylation changes in the genes EIF2AK4 and SLC2A5, 
which provide further evidence to metabolic adaptations to a changing diet during the Neolithic 
transition. RoAM offers powerful algorithms that position it as a key asset for researchers seeking to 
identify evolutionary regulatory changes through the lens of paleoepigenetics. 
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Introduction 
Identifying changes in gene expression levels is a powerful tool to study evolutionary shifts and 
adaptations. Specifically, many efforts have been directed to identifying changes in gene regulation 
along the human lineage (1–3). The rise of ancient DNA (aDNA) offers a potential to study regulatory 
changes that shaped modern humans and might have affected our recent evolution. Given that 
changes in gene regulation are difficult to read directly from the DNA sequence, and that RNA rarely 
survives in ancient remains, DNA methylation stands out as the best proxy of ancient gene 
expression levels (2, 4). DNA methylation, which in mammals affects cytosines in the context of CpG 
positions, is a key epigenetic mark that is tightly associated with gene expression levels (5). 
Incidentally, unlike other epigenetic marks such as histone modifications, DNA methylation is highly 
stable and remains on aDNA for extended periods (6). 

More than a decade ago, we and others developed computational methods for reconstructing 
premortem DNA methylation patterns from aDNA (7, 8). These techniques used the fact that 
deamination – the main chemical degradation of aDNA – turns methylated cytosines into thymines 
and unmethylated cytosines into uracils (6). In preparing the aDNA for sequencing, a treatment with 
uracil-specific excision reagent (USER) is often used (6), generating an asymmetry between 
methylated and unmethylated cytosines, which can be used to distinguish between them by carrying 
out statistical analysis of the number of 𝐶𝐶 → 𝑇𝑇 transitions in CpG positions. A high rate of 𝐶𝐶 → 𝑇𝑇 
indicates premortem hypermethylation, while the converse indicates hypomethylation. These 
pioneering methods have not only opened avenues for exploring epigenetic regulations in ancient 
samples, but also enabled the reconstruction of genome-wide methylation maps and the 
identification of differentially methylated regions (DMRs) between ancient samples. These works 
founded the field of paleoepigenetics, which provided significant insights into various aspects of 
human evolution (2, 4, 9) 

Several of these aDNA reconstruction algorithms were published as tools, including RoAM (8), 
epiPALEOMIX (10), and its successor DAMMET (11). However, RoAM was distributed as Matlab code, 
and its use was limited. DAMMET, which employs a maximum likelihood estimation to calculate 
methylation levels based on the 𝐶𝐶 → 𝑇𝑇 transition counts, is the most recent tool, but has several 
limitations. First, it is assumed that all four nucleotides have the same frequency of 0.25, ignoring GC 
content biases. Specifically, the GC content of the human genome is known to be 40.9% (12). 
Second, it is assumed that there is an equal probability of 1/7 for each dinucleotide that can be read 
as a CpG due to a mutation, which does not align with established mutation rates in humans (13, 
14). Notably, mutations are not uniformly distributed, with 𝐶𝐶 → 𝑇𝑇 mutations being particularly 
prevalent (15). Third, the estimation procedure includes cytosines outside of a CpG context, which 
are assumed to be unmethylated. However, some small levels of non-CpG methylation are known to 
exist (16), especially in embryonic cells and specific mature cell types such as neurons. Not much is 
known about the prevalence and significance of non-CpG methylation in tissues that are present in 
the fossil record, particularly bones and teeth. This, combined with the assumption that the 
deamination rate of cytosines in non-CpG context is identical to that of cytosines within CpG context, 
can introduce bias into the reconstructed map. Indeed, previous works showed that methylation 
maps provided by DAMMET show more hypomethylation than expected (17, 18). 

Moreover, DAMMET generates methylation maps, but does not compare them to identify DMRs. 
RoAM, on the other hand, does include a method to detect DMRs, but could originally do so only 
between pairs of samples. As the number of published aDNA samples continues to grow, the 
detection of DMRs between large groups of samples has become desirable, as they have the 
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potential to unveil DNA methylation differences between populations, within the same population 
across different time points, and between closely related species. 

Here, we present a new python version of RoAM (Reconstruction of Ancient Methylation), which 
removes many of the aforementioned limitations. It is feature-rich, flexible, easy to use, and its code 
is freely available. It allows for the generation of premortem genome-wide aDNA methylation maps, 
as well as the detection of DMRs between groups of samples. The current version contains 
numerous improvements over the original software, including novel methods for filtering out true 
𝐶𝐶 → 𝑇𝑇 mutations. RoAM does not use assumptions about nucleotide frequencies, and does not rely 
on cytosines outside of CpG context. 

To demonstrate the capabilities of RoAM, we reconstructed the methylomes of 14 samples from the 
Balkans and detected DMRs between pre-Neolithic revolution specimens and post-Neolithic 
revolution ones. As expected from the short time span separating these populations, we detected 
only four DMRs with modest levels of methylation change. However, the genes that are associated 
with these DMRs might hold clues to nutritional changes that occurred during the Neolithic 
transition. Notably, PTPRN2, which is involved in insulin response to glucose stimulus, is predicted to 
be overexpressed in post-Neolithic revolution individuals, as expected for high carbohydrate diet. 
Methylation changes were also found in EIF2AK4, a sensor for amino acid deprivation that also 
regulates insulin, and SLC2A5, the main fructose transporter. In total, these findings may provide 
clues to regulatory changes that might have accompanied the major changes in diet and lifestyle 
that ensued following the Neolithic revolution. 

Methods 
RoAM performs two main tasks. First, it reconstructs the methylation map of ancient samples. Then, 
it compares groups of samples to detect DMRs between them (Figure 1). In the following, we 
thoroughly describe these two parts. 

Part I. Reconstructing premortem ancient DNA methylation 
The main input for this part is a BAM file of an ancient individual. Each BAM file is analyzed through 
five consecutive steps (Figure 1): (1) basic processing of the BAM file; (2) diagnosis step to 
automatically determine filtering parameters; (3) carrying out the filtering to remove non-
informative CpG positions; (4) estimating the deamination rate; and (5) reconstructing the 
premortem DNA methylation. 

In addition to the BAM file, RoAM requires several input parameters that instruct it how to process 
the specific sample. Although not mandatory, it is highly recommended to provide a reference 
present-day DNA methylation map generated from the same tissue from which the aDNA was 
extracted. The reason for this is that such a reference allows for more accurate estimation of the 
deamination rate and methylation reconstruction. We provide such reference for present-day 
human bone aligned to hg19, see https://carmelab.huji.ac.il/data.html. A full description of all input 
parameters can be found in the README file in the GitHub page of RoAM, 
https://github.com/swidler/roam-python. 

RoAM provides the user with two outputs that contain the reconstructed methylation map. One is a 
simple BED file, and the other is a python object that also contains all parameters that were used by 
the algorithm. This python object is later required for the DMR detection part.  
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Step I: BAM file processing 
RoAM reads all relevant information from a BAM file into a python object. This object stores some 
descriptive characteristics of the sample, such as the sample name, species and library preparation 
method. In addition, it holds relevant summary statistics of the sequencing data, specifically 
nucleotide counts in each CpG position. At later steps, more information is stored in this object, such 
as the filtering parameters, the estimated deamination rate, and the reconstructed methylation 
values. BAM files are processed, one chromosome at a time, using Python’s pysam module 
(https://github.com/pysam-developers/pysam). During this step, RoAM filters out low quality reads, 
and computes base counts for each position in a way that depends on the library preparation 
method. For single-strand libraries, each strand is treated independently, and only 𝐶𝐶 → 𝑇𝑇 transitions 
are relevant. For double-strand libraries, complementary 𝐺𝐺 → 𝐴𝐴 events along the opposite strand 
are counted as well. 

This step is the most time-consuming part of the pipeline. However, it needs to be executed only 
once per sample, after which the saved object can be re-used. 

Step II: Diagnosis 
Filtering in RoAM is aimed at removing CpG positions whose cytosine and thymine counts may be 
spurious or uninformative to the reconstruction process. We identify two groups of such CpG 
positions. First, some positions show suspiciously high coverage that suggest they are a result of PCR 
duplications. Second, some positions show 𝐶𝐶 → 𝑇𝑇 counts suggestive of premortem mutations rather 
than deamination. 

RoAM runs a diagnostic procedure that automatically suggests parameter values that should be used 
during filtering. The user can manually override these suggestions. 

Identifying PCR duplications 
Let 𝑡𝑡𝑖𝑖 and 𝑐𝑐𝑖𝑖 be the counts of thymines and cytosines, respectively, in CpG position 𝑖𝑖, and let 𝑛𝑛𝑖𝑖 =
𝑡𝑡𝑖𝑖 + 𝑐𝑐𝑖𝑖  be the total count in this position. As a first step, we use a crude outlier removal process to 
remove positions with extreme values of 𝑛𝑛𝑖𝑖. Then, we use a more refined method to remove 
additional outlying positions. For the first step, we compute the 25th and 75th percentiles of all 𝑛𝑛𝑖𝑖 
values, denoted 𝑝𝑝25 and 𝑝𝑝75, respectively. We compute the interquartile range as 𝑟𝑟 = 𝑝𝑝75 − 𝑝𝑝25, 
and remove all positions where 𝑛𝑛𝑖𝑖 > 𝑝𝑝75 + 𝑠𝑠 ⋅ 𝑟𝑟. Here, 𝑠𝑠 is a parameter called span, set by default to 
5. 

For the second step, let 𝑁𝑁(𝑐𝑐) be the histogram of the remaining 𝑛𝑛𝑖𝑖 values, counting the number of 
CpG positions with coverage 𝑐𝑐. 𝑁𝑁(𝑐𝑐) resembles normal distribution truncated at 1, and with a 
heavier right-tail. To account for the truncation, we use the following method to estimate the 
parameters of the distribution. Let 𝑐𝑐𝑚𝑚 be the coverage level that maximizes 𝑁𝑁(𝑐𝑐). Based on the 
three coverage levels 𝑐𝑐𝑚𝑚 − 1, 𝑐𝑐𝑚𝑚, and 𝑐𝑐𝑚𝑚 + 1, we estimate the parameters 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 of the best-
fitting binomial 𝑁𝑁(𝑥𝑥) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐. We estimate 𝜇𝜇, the mean of the normal distribution, as the 
point where this function is maximized, �̂�𝜇 = −𝑏𝑏/2𝑎𝑎. We call the maximum value of the function 
𝑁𝑁0 = 𝑁𝑁(�̂�𝜇) = −𝑏𝑏2/4𝑎𝑎 + 𝑐𝑐. To estimate the standard deviation, 𝜎𝜎, we find the first bin in the 
histogram, 𝑏𝑏, such that 𝑏𝑏 is greater than 𝜇𝜇 and for which 𝑁𝑁(𝑏𝑏) ≤ 𝑡𝑡 ⋅ 𝑁𝑁0, where 𝑡𝑡 is a parameter that 
is set by default to 0.1. The smaller 𝑡𝑡 is, the more the approximation accounts for the heavy tail. Let 
𝑓𝑓 = 𝑁𝑁(𝑏𝑏)/𝑁𝑁0 be the ratio of these two bins. Then, 

𝑁𝑁(𝑏𝑏) =
𝑁𝑁

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑏𝑏−𝜇𝜇�)2
2𝜎𝜎2 = 𝑓𝑓 ⋅ 𝑁𝑁0 =

𝑓𝑓𝑁𝑁
𝜎𝜎√2𝜋𝜋

, 

where 𝑁𝑁 is the total number of counts, 𝑁𝑁 = ∑ 𝑁𝑁(𝑐𝑐)𝑐𝑐 . Therefore, 𝜎𝜎 can be estimated using this ratio 
by 
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𝜎𝜎� =
𝑏𝑏 − �̂�𝜇

�2 ln �1
𝑓𝑓� �

. 

Given the estimates �̂�𝜇 and 𝜎𝜎�, we further remove CpG positions that might be a result of PCR 
duplicates by filtering out all positions whose coverage exceeds a threshold 𝑐𝑐𝑇𝑇, determined as the 
coverage that would yield an expected value of counts less than one. We find 𝑐𝑐𝑇𝑇 by solving for 

𝑁𝑁
𝜎𝜎�√2𝜋𝜋

𝑒𝑒−
(𝑐𝑐𝑇𝑇−𝜇𝜇�)2
2𝜎𝜎�2 < 1, 

giving 

𝑐𝑐𝑇𝑇 = ��̂�𝜇 + 𝜎𝜎��2 ln �
𝑁𝑁

𝜎𝜎�√2𝜋𝜋
��. 

Removal of PCR duplicates is done by removing all positions with 

𝑛𝑛𝑖𝑖 > 𝑐𝑐𝑇𝑇 . (1) 

Detecting 𝐶𝐶 → 𝑇𝑇 mutations 
𝐶𝐶 → 𝑇𝑇 mutations are detected in two ways. As we detailed in past papers (8, 19), in aDNA that was 
sequenced using single-strand libraries, mutations can be distinguished from deamination by 
examining the opposite strand for 𝐺𝐺 → 𝐴𝐴 transitions. 

Here, we developed an alternative technique, that is also applicable for aDNA sequenced using 
double-strand libraries. It is based on the analysis of the histogram 𝐻𝐻 of 𝑡𝑡𝑖𝑖 and removing CpG 
positions with 𝐶𝐶 → 𝑇𝑇 rates that are too high and likely represent a 𝐶𝐶 → 𝑇𝑇 mutation. We examine 
each coverage level 𝑐𝑐, independently, and therefore can now assume that we are only looking at the 
𝑁𝑁(𝑐𝑐) CpG positions whose coverage is 𝑐𝑐. Denoting by 𝑝𝑝 the probability of a 𝐶𝐶 → 𝑇𝑇 transition, we 
assume that 𝐻𝐻 represents a mixture of three binomial distributions: (1) homozygous mutations, 
where 𝑝𝑝1 ≈ 1. (2) heterozygous mutations, where 𝑝𝑝2 = 0.5. (3) non-mutated sites that went 
through deamination, where 𝑝𝑝3 ≈ 0.01; We use expectation maximization (EM) to estimate the 𝑝𝑝’s 
and 𝑤𝑤’s in the binomial mixture model (BMM): 

Pr(𝑡𝑡𝑖𝑖 = 𝑡𝑡) = �𝑤𝑤𝑘𝑘𝐵𝐵(𝑡𝑡|𝑐𝑐,𝑝𝑝𝑘𝑘)
3

𝑘𝑘=1

, 

where 𝑤𝑤𝑘𝑘 is the weight of the 𝑘𝑘’th distribution. According to the EM formulation, in each iteration 
we update the following three magnitudes: 

𝑟𝑟𝑖𝑖𝑘𝑘 =
𝑤𝑤𝑘𝑘𝑃𝑃𝑘𝑘𝑖𝑖

∑ 𝑤𝑤𝑘𝑘′𝑃𝑃𝑘𝑘′𝑖𝑖𝑘𝑘′
, 

𝑤𝑤𝑘𝑘 =
1
𝑛𝑛
�𝑟𝑟𝑖𝑖𝑘𝑘

𝑛𝑛

𝑖𝑖=1

, 

𝑝𝑝𝑘𝑘 =
∑ 𝑡𝑡𝑖𝑖𝑟𝑟𝑖𝑖𝑘𝑘𝑛𝑛
𝑖𝑖=1

𝑁𝑁∑ 𝑟𝑟𝑖𝑖𝑘𝑘𝑛𝑛
𝑖𝑖=1

. 
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Here, 𝑃𝑃𝑘𝑘𝑖𝑖 = 𝐵𝐵(𝑡𝑡𝑖𝑖|𝑐𝑐,𝑝𝑝𝑘𝑘). To make the computations more efficient, we avoided summing over 𝑖𝑖 =
1, … ,𝑛𝑛 and rather summed over the values of the histogram, 𝑔𝑔 = 0, … ,𝑁𝑁. Hence, we modified the 
above iterations to read: 

𝑟𝑟𝑔𝑔𝑘𝑘 =
𝑤𝑤𝑘𝑘𝑃𝑃𝑘𝑘𝑔𝑔

∑ 𝑤𝑤𝑘𝑘′𝑃𝑃𝑘𝑘′𝑔𝑔𝑘𝑘′
, 

𝑤𝑤𝑘𝑘 =
1
𝑛𝑛
�𝐻𝐻𝑔𝑔𝑟𝑟𝑔𝑔𝑘𝑘

𝑁𝑁

𝑔𝑔=1

, 

𝑝𝑝𝑘𝑘 =
∑ 𝑔𝑔 ⋅ 𝐻𝐻𝑔𝑔𝑟𝑟𝑔𝑔𝑘𝑘𝑁𝑁
𝑔𝑔=1

𝑁𝑁∑ 𝑟𝑟𝑔𝑔𝑘𝑘𝑁𝑁
𝑔𝑔=1

, 

where 𝑃𝑃𝑘𝑘𝑔𝑔 is the value of the 𝑘𝑘’th distribution for the value of the 𝑔𝑔th bin. Once we have estimated 
all these parameters, we decide on the threshold 𝑘𝑘𝑐𝑐, defined as 

𝑤𝑤3𝐵𝐵(𝑘𝑘𝑐𝑐|𝑐𝑐,𝑝𝑝3) = 𝑤𝑤2𝐵𝐵(𝑘𝑘𝑐𝑐|𝑐𝑐,𝑝𝑝2). 

Writing the binomial distribution explicitly, we get 

𝑤𝑤3 �
𝑐𝑐
𝑘𝑘𝑐𝑐�𝑝𝑝3

𝑘𝑘𝑐𝑐(1 − 𝑝𝑝3)𝑐𝑐−𝑘𝑘𝑐𝑐 = 𝑤𝑤2 �
𝑐𝑐
𝑘𝑘𝑐𝑐�𝑝𝑝2

𝑘𝑘𝑐𝑐(1 − 𝑝𝑝2)𝑐𝑐−𝑘𝑘𝑐𝑐 . 

Taking log from both sides, 

ln𝑤𝑤3 + 𝑘𝑘𝑐𝑐 ln𝑝𝑝3 + (𝑐𝑐 − 𝑘𝑘𝑐𝑐) ln(1 − 𝑝𝑝3) = ln𝑤𝑤2 + 𝑘𝑘𝑐𝑐 ln𝑝𝑝2 + (𝑐𝑐 − 𝑘𝑘𝑐𝑐) ln(1 − 𝑝𝑝2). 

This gives 

𝑘𝑘𝑐𝑐 ln
𝑝𝑝3
𝑝𝑝2

+ 𝑐𝑐 ln
1 − 𝑝𝑝3
1 − 𝑝𝑝2

− 𝑘𝑘𝑐𝑐 ln
1 − 𝑝𝑝3
1 − 𝑝𝑝2

= ln
𝑤𝑤2
𝑤𝑤3

, 

or 

𝑘𝑘𝑐𝑐 =
ln𝑤𝑤2𝑤𝑤3

− 𝑐𝑐 ln 1 − 𝑝𝑝3
1 − 𝑝𝑝2

ln 𝑝𝑝3(1 − 𝑝𝑝2)
𝑝𝑝2(1 − 𝑝𝑝3) 

. 

In our case, we force 𝑝𝑝2 = 0.5, hence 

𝑘𝑘𝑐𝑐 = �
ln𝑤𝑤2𝑤𝑤3

− 𝑐𝑐 ln 2(1 − 𝑝𝑝3)

ln 𝑝𝑝3
1 − 𝑝𝑝3

 
�, 

where the ⌈⋅⌉ operator means the closest integer from above. We then remove all CpG positions 
whose coverage is 𝑐𝑐 and where 𝑡𝑡𝑖𝑖 ≥ 𝑘𝑘𝑐𝑐. 

We can evaluate the number of true deaminated positions that are missed by this filtering,  

𝑤𝑤3𝑁𝑁(𝑐𝑐) � �𝑐𝑐𝑘𝑘�𝑝𝑝3
𝑘𝑘(1− 𝑝𝑝3)𝑐𝑐−𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑘𝑘𝑐𝑐

. 

Similarly, we can evaluate the number of positions with false deamination, which is 
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𝑤𝑤2𝑁𝑁(𝑐𝑐) � �𝑐𝑐𝑘𝑘�𝑝𝑝2
𝑘𝑘(1 − 𝑝𝑝2)𝑐𝑐−𝑘𝑘

𝑘𝑘𝑐𝑐−1

𝑘𝑘=0

+ 𝑤𝑤1𝑁𝑁(𝑐𝑐) � �𝑐𝑐𝑘𝑘�𝑝𝑝1
𝑘𝑘(1 − 𝑝𝑝1)𝑐𝑐−𝑘𝑘

𝑘𝑘𝑐𝑐−1

𝑘𝑘=0

, 

which, after substituting 𝑝𝑝2 = 0.5, gives 

𝑤𝑤2𝑁𝑁(𝑐𝑐) �
1
2
�
𝑐𝑐
⋅ � �𝑐𝑐𝑘𝑘�
𝑘𝑘𝑐𝑐−1

𝑘𝑘=0

+ 𝑤𝑤1𝑁𝑁(𝑐𝑐) � �𝑐𝑐𝑘𝑘�𝑝𝑝1
𝑘𝑘(1 − 𝑝𝑝1)𝑐𝑐−𝑘𝑘

𝑘𝑘𝑐𝑐−1

𝑘𝑘=0

. 

These computations of false negative and false positive rates are reported during the diagnosis step. 

Next, from within all positions with coverage 1 ≤ 𝑐𝑐 ≤ 𝑐𝑐𝑇𝑇, we remove those for which 

𝑡𝑡𝑖𝑖 ≥ 𝑘𝑘𝑐𝑐 . (2) 

Step III: Filtering 
The filters outlined in Step II are used to determine which sites to remove. First, we clean PCR 
duplicates. This is done by setting a threshold 𝑐𝑐𝑇𝑇 and removing every site where 𝑛𝑛𝑖𝑖 > 𝑐𝑐𝑇𝑇  (see Eq. 1). 
Then, let 𝑖𝑖 denote all the sites with a given coverage level 𝑐𝑐, where 𝑐𝑐 = 1, … , 𝑐𝑐𝑇𝑇. We remove all sites 
for which 𝑡𝑡𝑖𝑖 ≥ 𝑘𝑘𝐶𝐶  (see Eq. 2), as they are suspected as true mutations. 

For single-strand libraries, we add a filter on the 𝐺𝐺 → 𝐴𝐴 transitions in the opposite strand. To this 
end, we set a maximum number of allowed A’s, 𝑎𝑎𝐿𝐿, as well as a minimum 𝐺𝐺 → 𝐴𝐴 ratio, 𝑇𝑇𝑚𝑚 (default: 
0.25). Then, we remove all sites where 

𝑎𝑎𝑖𝑖 > 𝑎𝑎𝐿𝐿  and 
𝑎𝑎𝑖𝑖

𝑎𝑎𝑖𝑖 + 𝑔𝑔𝑖𝑖
≥ 𝑇𝑇𝑚𝑚. (3) 

After filtering, a merging procedure is applied to combine information from both Cs of the same CpG 
position (on opposite strands). The methylation state of these two Cs should be identical (20), thus 
merging the counts of Cs and Ts from both strands increases the amount of information obtained 
from each CpG position. 

Step IV: Estimation of deamination rate 
The deamination rate is estimated using the same technique we have previously detailed (19), and is 
based on the C and T counts in CpG positions whose methylation in the modern reference is above a 
certain threshold, 𝑚𝑚ℎ. This parameter should be close to one and is exactly one by default. As the 
maximum-likelihood estimator of the methylation in a site is 

𝑚𝑚𝑖𝑖 =  
𝑡𝑡𝑖𝑖
𝜋𝜋𝑛𝑛𝑖𝑖

, 

limiting ourselves to positions where 𝑚𝑚𝑖𝑖 = 1 lets us estimate the degradation rate by 

𝜋𝜋� =  
∑𝑡𝑡𝑖𝑖
∑𝑛𝑛𝑖𝑖

. 

In a case where a reference is not available, one can estimate the degradation rate by assuming 
knowledge of the global mean methylation in the sample, 𝑚𝑚𝑔𝑔. Then, we estimate the deamination 
rate by 

𝜋𝜋� =
∑𝑡𝑡𝑖𝑖

𝑚𝑚𝑔𝑔∑𝑛𝑛𝑖𝑖
, 

where the sum is over all positions in the genomes. 
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This function also computes the local methylation rate for each chromosome, which allows testing 
for homogeneity of the deamination rate across chromosomes. 

Step V: Methylation reconstruction 
By default, RoAM uses histogram matching to reconstruct the methylation maps by finding the non-
linear transformation 𝑚𝑚𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑖𝑖/𝑛𝑛𝑖𝑖) that makes the histogram of 𝑚𝑚𝑖𝑖 as close as possible to that of a 
reference methylation map in a modern bone (21, 22), where 𝑚𝑚𝑖𝑖 is the estimated methylation at 
position 𝑖𝑖. 

By design, we obtain a histogram of methylation values which resembles the equivalent histogram 
from modern-day sample. It stands in contrast to DAMMET, which tends to show shifts towards low 
methylation (Figure 2). We used the 𝜒𝜒2 statistic to compare the histograms of maps reconstructed 
using RoAM and DAMMET to a bone map that was not used as a reference. Whereas 𝜒𝜒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 = 7 ∗
105, the same statistic for DAMMET was one order of magnitude larger, 𝜒𝜒𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷

2 = 2.53 ∗ 106, 
indicating larger distance between the histograms. 

Histogram matching serves as the default method for methylation reconstruction, but users may 
choose two other methods. One is the truncated linear transformation, 

𝑚𝑚𝑖𝑖 = max �0, min �1,
𝑡𝑡𝑖𝑖
𝜋𝜋𝑛𝑛𝑖𝑖

��, 

as described and used previously (19). To achieve a smooth truncation, RoAM also offers a third 
method, called the logistic transformation, where 

𝑚𝑚𝑖𝑖 = tanh �
𝑡𝑡𝑖𝑖
𝜋𝜋𝑛𝑛𝑖𝑖

�. 

Given the typically small thymine counts in each CpG position, 𝑡𝑡𝑖𝑖, RoAM reconstructs methylation in 
windows of 𝑊𝑊 consecutive CpG positions (𝑊𝑊 is always set as an odd number, and the reconstructed 
methylation in the window is assigned to the middle position). The user may determine the window 
size they wish to use, but RoAM includes two methods to automatically determine the window size. 

Probability-based method. We require that the probability of observing no thymines in a window for 
a minimum methylation level 𝑚𝑚0 be less than 𝑝𝑝0. This translates into 

Pr(𝑡𝑡 = 0) = (1 − 𝜋𝜋𝑚𝑚0)𝑛𝑛 < 𝑝𝑝0, 

where 𝑡𝑡 is the total thymine count in the window, and 𝑛𝑛 is the total count of thymines and cytosines. 
Taking log of both sides we get 

𝑛𝑛 ⋅ ln(1 − 𝜋𝜋𝑚𝑚0) < ln𝑝𝑝0, 

meaning that we have to have 

𝑛𝑛 >
ln 𝑝𝑝0

ln(1 − 𝜋𝜋𝑚𝑚0) 

in the window. If the window is covered by the average effective coverage, 𝐶𝐶 , then 𝑛𝑛 = 𝑊𝑊𝐶𝐶. This 
translates into the following window size: 

𝑊𝑊 = �
1
𝐶𝐶
⋅

ln𝑝𝑝0
ln(1 − 𝜋𝜋𝑚𝑚0)�. 
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Relative-error-based method. We require that the relative error in estimating the methylation, when 
the true methylation is 𝑚𝑚0, be lower than 1/𝑘𝑘. Let the estimator for the methylation be 

𝑚𝑚 =
𝑡𝑡
𝜋𝜋𝑛𝑛

. 

Then, its mean is 

𝐸𝐸(𝑚𝑚) =
1
𝜋𝜋
𝐸𝐸 �

𝑡𝑡
𝑛𝑛
� =

1
𝜋𝜋
𝜋𝜋𝑚𝑚0 = 𝑚𝑚0, 

and its variance is 

𝑠𝑠2(𝑚𝑚) =
1
𝜋𝜋2

𝑉𝑉 �
𝑡𝑡
𝑛𝑛
� =

𝜋𝜋𝑚𝑚0(1− 𝜋𝜋𝑚𝑚0)
𝜋𝜋2𝑛𝑛

. 

We require that 𝑠𝑠(𝑚𝑚)/𝐸𝐸(𝑚𝑚) < 1/𝑘𝑘, hence 

𝜋𝜋𝑚𝑚0(1 − 𝜋𝜋𝑚𝑚0)
𝜋𝜋2𝑚𝑚0

2𝑛𝑛
<

1
𝑘𝑘2

, 

or 

𝑛𝑛 >
𝑘𝑘2(1− 𝜋𝜋𝑚𝑚0)

𝜋𝜋𝑚𝑚0
. 

Again, using the average effective coverage, 𝐶𝐶, this translates into 

𝑊𝑊 = �
𝑘𝑘2(1− 𝜋𝜋𝑚𝑚0)

𝜋𝜋𝑚𝑚0𝐶𝐶
�. 

The default that RoAM uses is the probability-based method. 

Part II. DMR detection 
Once reconstruction of methylation has been achieved for multiple samples, a second part of RoAM 
is designed to detect and statistically validate DMRs between two groups of samples. This process 
comprises the following steps (Figure 1): (1) DMR detection between the two groups, (2) the use of 
simulations to adjust the parameters of the DMR-calling algorithm to reach a desired level of false 
discovery rate (FDR), and (3) annotation of the final list of DMRs. The algorithm provides a table with 
a list of all the DMRs, their location, annotation, and the methylation level in each of the samples, as 
well as the combined estimated methylation in each group. 

Step I: DMR detection 
Let us first examine a group of 𝑆𝑆 samples. We assume that the methylation across members of the 
group is homogeneous, and denote the common methylation value in window 𝑗𝑗 as 𝑚𝑚𝑗𝑗. 

Let us look at sample 𝑖𝑖. We assume that the observed number of T bases in window 𝑗𝑗 is binomially 
distributed, 𝑡𝑡𝑖𝑖𝑖𝑖~𝐵𝐵(𝑛𝑛𝑖𝑖𝑖𝑖,𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖), where 𝜋𝜋𝑖𝑖 is the deamination rate of the sample and 𝑛𝑛𝑖𝑖𝑖𝑖 is the sum of 
the Cs and Ts in each CpG in window j in sample i. The likelihood of sample 𝑖𝑖 is 

𝐿𝐿𝑖𝑖𝑖𝑖 = �
𝑛𝑛𝑖𝑖𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖
� �𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖�

𝐷𝐷𝑖𝑖𝑖𝑖�1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖�
𝑛𝑛𝑖𝑖𝑖𝑖−𝐷𝐷𝑖𝑖𝑖𝑖 , 

and the log-likelihood 
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ℓ𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑖𝑖 ln�𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖� + �𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖� ln(1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖) + 𝐵𝐵𝑖𝑖, 

where 𝐵𝐵𝑖𝑖  is a term that is independent of 𝑚𝑚𝑖𝑖. The total log-likelihood of all 𝑆𝑆 samples in the group 

ℓ𝑖𝑖 = �𝑡𝑡𝑖𝑖𝑖𝑖ln (𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖)
𝑆𝑆

𝑖𝑖=1

+ ��𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�ln (1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖)
𝑆𝑆

𝑖𝑖=1

+ 𝐵𝐵, 

where 𝐵𝐵 = ∑ 𝐵𝐵𝑖𝑖𝑖𝑖  is a term independent of 𝑚𝑚𝑖𝑖. The score function with respect to 𝑚𝑚𝑖𝑖 is: 

𝑑𝑑ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

= �
𝑡𝑡𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

𝑆𝑆

𝑖𝑖=1

−�
�𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖

1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖

𝑆𝑆

𝑖𝑖=1

=
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖

−�
�𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖

1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖

𝑆𝑆

𝑖𝑖=1

, 

where 

𝑇𝑇𝑖𝑖 = �𝑡𝑡𝑖𝑖𝑖𝑖

𝑆𝑆

𝑖𝑖=1

. 

To look for the maximum likelihood estimator, we should equate this to zero. This can be done 
numerically, using, e.g., the Newton-Raphson method. For this, 

𝑑𝑑2ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

2 = −
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖
2 −�

�𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖2

�1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖�
2

𝑆𝑆

𝑖𝑖=1

. 

Given 𝑚𝑚𝑖𝑖
𝐷𝐷 is the approximate solution at iteration 𝑡𝑡, the solution at iteration 𝑡𝑡 + 1 is given by 

𝑚𝑚𝑖𝑖
𝐷𝐷+1 = 𝑚𝑚𝑖𝑖

𝐷𝐷 −
𝑑𝑑ℓ/𝑑𝑑𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖

𝐷𝐷)
𝑑𝑑2ℓ/𝑑𝑑𝑚𝑚𝑖𝑖

2(𝑚𝑚𝑖𝑖
𝐷𝐷)

. 

In order to get an initial guess, we may obtain an approximated solution using 

1
1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖

≈ 1 + 𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖. 

Hence, 

𝑑𝑑ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

≈
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖

−��1 + 𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖��𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖

𝑆𝑆

𝑖𝑖=1

. 

This simplifies into 

𝑑𝑑ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

≈
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖

−��𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖

𝑆𝑆

𝑖𝑖=1

− 𝑚𝑚𝑖𝑖 � �𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖2
𝑆𝑆

(𝑖𝑖=1)

. 

Further approximating by neglecting terms of the order of 𝜋𝜋𝑖𝑖2, we get 

𝑑𝑑ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

≈
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖

−��𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖

𝑆𝑆

𝑖𝑖=

. 

This can be written as 
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𝑑𝑑ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

≈
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖

− 𝑁𝑁𝑖𝑖𝜋𝜋 + 𝑇𝑇𝑖𝑖𝜋𝜋, 

where 

𝑁𝑁𝑖𝑖𝜋𝜋 = �𝜋𝜋𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖

𝑆𝑆

𝑖𝑖=1

, 𝑇𝑇𝑖𝑖𝜋𝜋 = �𝜋𝜋𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝑆𝑆

𝑖𝑖=1

. 

The approximate solution is therefore 

𝑚𝑚𝑖𝑖
0 ≈

𝑇𝑇𝑖𝑖
𝑁𝑁𝑖𝑖𝜋𝜋 − 𝑇𝑇𝑖𝑖𝜋𝜋

. 

The Fisher information for estimating 𝑚𝑚𝑖𝑖 is equal to the expectation of the negative second 
derivative of the log-likelihood function, 

𝐼𝐼�𝑚𝑚𝑖𝑖� = −𝐸𝐸 �
𝑑𝑑2ℓ𝑖𝑖
𝑑𝑑𝑚𝑚𝑖𝑖

2� = 𝐸𝐸 �
𝑇𝑇𝑖𝑖
𝑚𝑚𝑖𝑖
2�+�𝐸𝐸�

�𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖2

�1 −𝑚𝑚𝑖𝑖𝜋𝜋𝑖𝑖�
2 �

𝑆𝑆

𝑖𝑖=1

 

The empirical Fisher information is the evaluation of this negative second derivative at the estimated 
value of the parameter, and may serve as an approximation of the Fisher information, 

𝐼𝐼�𝑚𝑚�𝑖𝑖� = �
𝑇𝑇𝑖𝑖
𝑚𝑚�𝑖𝑖2

�+ �
�𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖2

�1 −𝑚𝑚�𝑖𝑖𝜋𝜋𝑖𝑖�
2

𝑆𝑆

𝑖𝑖=1

, 

where 𝑚𝑚�𝑖𝑖 is the estimator obtained from the iterations of the Newton-Raphson algorithm. The 
empirical Fisher information is computed as part of the implementation of the algorithm. Finally, we 
may approximate the variance of the estimator via the inverse of the empirical Fisher information: 

𝑉𝑉�𝑚𝑚�𝑖𝑖� ≈ 1/𝐼𝐼�𝑚𝑚�𝑖𝑖�. 

After computing 𝑚𝑚1,𝑖𝑖 and 𝑚𝑚2,𝑖𝑖, the methylation levels in every genomic window for the two groups, 
we can compare the two using a similar approach to the one used in (19). To this end, we define the 
two statistics 

 ℓ𝑗𝑗
+

=
𝑚𝑚1,𝑖𝑖 − 𝑚𝑚2,𝑖𝑖 − Δ 

�𝑉𝑉(𝑚𝑚1,𝑖𝑖) + 𝑉𝑉(𝑚𝑚2,𝑖𝑖)
, 

ℓ𝑖𝑖− =
𝑚𝑚2,𝑗𝑗 − 𝑚𝑚1,𝑗𝑗 − Δ 

�𝑉𝑉(𝑚𝑚1,𝑗𝑗) + 𝑉𝑉(𝑚𝑚2,𝑗𝑗)
. 

Here, Δ is a parameter of the algorithm, associated with the desired minimal methylation difference 

we wish to detect between the two groups. Next, we use a cumulative sum for ℓ𝑖𝑖+ and ℓ𝑖𝑖− to 
identify DMRs, as described in (19). In brief, we define the vectors 𝑄𝑄+ and 𝑄𝑄− of the same length as 

ℓ𝑖𝑖+ and ℓ𝑖𝑖−, as 

𝑄𝑄0+ = 0,𝑄𝑄𝑖𝑖+ = max �𝑄𝑄𝑖𝑖−1+ + ℓ𝑗𝑗
+

, 0�. 

𝑄𝑄− is defined in an analogous way.  
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In DMRs where group 1 is hypermethylated compared to group 2, we will obtain a sequence of 
positive values for ℓ𝑖𝑖+ resulting in an elevation in the values of 𝑄𝑄+. We define the DMR as the region 
[𝑎𝑎, 𝑏𝑏] between the last zero 𝑄𝑄𝐷𝐷 = 0, and the highest value 𝑄𝑄𝑏𝑏 = 𝑄𝑄𝑚𝑚𝐷𝐷𝑚𝑚 up to the next zero (19). 

Each DMR is characterized by several properties, such as its genomic length, the number of CpG 
positions it harbors, and its 𝑄𝑄𝑚𝑚𝐷𝐷𝑚𝑚. This allows for further filtering of DMRs, to achieve a desired false 
discovery rate (FDR), as explained in the next section. 

Step II: Simulations and FDR 
We employ simulations to filter out DMRs in such a way that we achieve a desired FDR level. The 
detailed procedure can be found in our previous paper (19). In short, we imitate the deamination 
process in each sample by generating Ts using a binomial process, where the coverage in each 
position and the deamination rate are kept constant for each sample. The methylation value in each 
position is determined in advance, and is kept constant across the samples from both groups, to 
model the null hypothesis of no methylation differences between the groups. 

Subsequently, we apply the same DMR detection procedure to the simulated data and count the 
number of detected DMRs. This number represents the number of DMRs detected under the null 
hypothesis. Repeating this many times (typically 100 times), we may compute the expected fraction 
of false DMRs within our original list of DMRs. By default, we set an FDR threshold of 0.05, but this 
parameter can be adjusted by the user. Given that the simulated DMRs originate from the null 
hypothesis, they tend to be shorter and have smaller 𝑄𝑄𝑚𝑚𝐷𝐷𝑚𝑚. Consequently, the algorithm applies a 
range of thresholds for the minimum number of CpG sites and 𝑄𝑄𝑚𝑚𝐷𝐷𝑚𝑚, looking for a combination that 
would achieve the desired FDR level. If multiple sets of parameters achieve this FDR level, we select 
the one that filters out the fewest of the original DMRs. 

Step III: Annotation 
The final step of this part creates annotations of the final DMR list. Two types of annotations are 
currently implemented: associating DMRs with gene bodies and promoters, and with CpG islands. 
Users are required to provide the location data (gene list and CpG island list). These files are 
provided in https://carmelab.huji.ac.il/data.html for hg19. By default, RoAM defines the promoter 
region of each gene as 5,000 bp upstream of the transcription start site (TSS) to 1,000 bp 
downstream, but this can be set by the user. In addition, annotation can be done against any list of 
genomic segments, inserted as a BED file.  

Results 
Epigenetics in general, and DNA methylation in particular, may respond to changes in internal or 
external conditions (23, 24). Research has unveiled connections between numerous environmental 
factors and alterations in DNA methylation (25–28). Consequently, even short bouts of 
environmental or lifestyle transitions may make epigenomic imprints that can be read. 

Motivated by this, we decided to investigate potential epigenetic imprints of the Neolithic transition 
using RoAM. The Neolithic revolution is a pivotal milestone in human history, representing a 
significant shift in lifestyle, from primarily that of hunting and gathering to a more sedentary one 
based on agriculture and animal husbandry. Pre-Neolithic revolution humans typically lived nomadic 
life, relying on wild plants and animals for sustenance. The adoption of agriculture and 
domestication practices led to significant changes in diet, disease load, levels of physical activity and 
many other aspects of life. These changes might have been accompanied by biological and 
physiological changes (e.g. (29)). Emerging evidence suggests that DNA methylation in some 
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genomic loci is sensitive to such lifestyle factors (30, 31). Hence, we decided to compare the ancient 
epigenomes of pre-Neolithic revolution to those of post-Neolithic revolution.  

Ancient individuals sequenced to high coverage are still not abundant, and tend to represent very 
different populations. Comparing pre- to post-Neolithic revolution individuals across many different 
populations potentially adds confounding factors. To address this, we limited our study to 14 high-
coverage individuals that come from the same region, the Balkans. Nine are pre-Neolithic revolution 
individuals, and five are post-Neolithic revolution ones (Table 1). Two samples, I1116 and I5725 are 
dated to a later period compared to the other post-Neolithic revolution samples. Whereas this 
chronological difference might introduce biases to the analysis, we nevertheless decided to include 
these samples in order to enlarge the number of post-Neolithic revolution individuals, which was 
anyway already small compared to the pre-Neolithic revolution group. Indeed, as will be shown 
below, these two samples sometimes show methylation patterns that are somewhat different than 
those of the other post-Neolithic revolution individuals. Genomic data of these ancient individuals 
were downloaded from the Allen Ancient Genome Diversity Project (32). Notably, petrous bone was 
the source for DNA extraction in all 14 samples, further reducing potential effects of confounding 
factors. 

We applied RoAM to reconstruct methylation for each sample and then detected DMRs between 
these two groups. Given the short time span separating the two groups, we expected to find only 
small methylation changes between them. We have therefore set the minimum methylation 
difference between groups (the Δ parameter, see Methods) to the very low value of 0.1.  

Methylation patterns can exhibit significant variations between two distinct tissues within the same 
individual (33). As a result, much of the research in the field of paleoepigenetics has concentrated on 
the evolutionary aspects of the skeletal system (19, 34). The relevance of skeletal DMRs to changes 
in lifestyle following the Neolithic transition is debated. However, we have shown that there are loci 
in the genome where differential methylation in one tissue may reflect differential methylation in 
another tissue, as long as the methylation change occurs early during embryogenesis (4). To help in 
focusing on differential methylation that arose during such early developmental times, we crossed 
our results with published methylation data derived from blood samples of modern hunter-
gatherers and farmers in Africa (35), where differentially methylated sites separating these 
population have been identified. We only considered genes that featured methylation changes in 
both bone and blood. 

Our conservative analysis yielded only four DMRs between these pre- and post-Neolithic revolution 
populations (Table 2). Three of the DMRs are located inside gene bodies and, interestingly, all four 
overlap CpG islands, suggesting a possible regulatory role of these methylation changes. The DMR 
with the highest 𝑄𝑄𝑚𝑚𝐷𝐷𝑚𝑚 (406.4) was found inside the gene body of the PTPRN2 gene (also known as 
IA-2β, Figure 3A), which also harbors the third-highest number of differentially methylated sites in 
blood, separating modern African hunter-gatherers from farmers, with a total of 62 such sites. 
PTPRN2 is a transmembrane protein present in dense-core vesicles and represents a major auto 
antigen of type 1 diabetes (36). Previous works found that PTPRN2 has a key role in insulin secretion 
in response to glucose stimulus, and suppression or knocking down of this gene can impair this 
process (37–40). Epigenetic regulation on PTPRN2 has been examined previously, and a DNA 
methylation change in a CpG site within this gene, which does not overlap with the detected DMR, 
has been associated with childhood obesity (41).  

To find the predicted effects of the DNA methylation changes on the expression level of this gene, 
we looked at the correlation between the methylation in this DMR and the expression of PTPRN2 
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across 22 tissues of present-day humans taken from the Roadmap dataset (42). We found a 
significant positive correlation (𝑅𝑅 = 0.65, 𝑃𝑃 = 8.8 ⋅ 10−4), suggesting that PTPRN2 was expressed in 
higher levels in post-Neolithic revolution individuals (Figure 3B). This implies lower insulin response 
to glucose stimulus in the pre-Neolithic revolution individuals.  

Another DMR was detected inside EIF2AK4 (also known as GCN2, Figure 4A), a sensor for amino acid 
deprivation and a regulator of lipid metabolism and gluconeogenesis (43, 44). This kinase plays a 
crucial role in maintaining homeostasis during amino acid deprivation. When under a leucine-
deprived diet, EIF2AK4 reduces insulin levels and increases insulin sensitivity (45, 46). However, in 
mice consuming a high fat diet, the opposite effect is shown, where EIF2AK increases blood insulin 
levels and decreases insulin sensitivity (47). Furthermore, EIF2AK4 is also implicated in diabetes, as 
its knockout in diabetic mice results in a decrease in serum fasting glucose and improved cardiac 
symptoms (48). 

The third DMR was detected in the gene MAST1 (Figure 4B), a kinase that plays a role in the central 
nervous system (49–51). No relation of this gene to metabolism or any function that might be 
related to the Neolithic revolution is currently known. The fourth DMR is not located on a promoter 
or a gene body (Figure 4C). 

Only four DMRs out of an original set of 155,693 had properties that meet the thresholds set by the 
simulations to get an FDR below 0.05 (see Methods). Although not statistically significant, we 
noticed an interesting DMR that was very close to crossing the required thresholds. This DMR 
overlap CpG island, and is located within the SLC2A5 gene (also known as GLUT5, Figure 4D), a major 
fructose transporter in the gut. Many works showed that the presence of fructose stimulation can 
enhance, even within hours, SLC2A5 expression in the small intestine of adult animals. The same is 
true of neonatal and weaning pups that do not normally consume fructose and have low levels of 
SLC2A5 expression in their intestines (52–57). SLC2A5 is also associated with diabetes and obesity, as 
the gene is differentially expressed in insulin-sensitive tissues of patients with type 2 diabetes and in 
mouse models for diabetes and obesity, such as muscle (58) and fat tissues (59, 60). 

Discussion 
We introduce here RoAM, a user-friendly program designed to provide a complete analysis pipeline 
for computational reconstruction of ancient methylomes and the identification of DMRs that 
distinguish ancient populations from each other. As the significance of evolutionary epigenetics is in 
the rise, RoAM proves to be a valuable tool for researchers seeking to integrate paleoepigenetic 
insights into their studies. 

An advantage of RoAM is that new features are constantly added, gradually providing it with even 
more power. For example, a primary limitation of the reconstruction algorithm is that it cannot work 
on low-coverage samples, as the counts of Cs and Ts may be too low to allow for reasonable 
standard error of the estimator. To overcome this, we have introduced the concept of pooling, 
where counts from many low-coverage samples from the same group are amalgamated to provide a 
methylation map that represents the entire population (22). Pooling has already been integrated 
into RoAM, making it a viable tool for analyzing methylation maps in populations with low-coverage 
samples. 

There are several limitations of the current software. First, the current implementation does not 
allow comparisons across more than two groups. Second, the code is limited to detecting DMRs 
between two groups that are exclusively composed of ancient samples. Ideally, we would like to 
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integrate modern samples in the analyses, such that each group can potentially consist of a mixture 
of modern and ancient samples. Third, the algorithm exclusively performs methylation 
reconstruction on samples subjected to USER treatment (6). However, this treatment is not 
universally performed in aDNA library preparation. Finally, it does not account for difference in 
deamination rates along the read (6). We are currently actively working on developing solutions for 
all these limitations. RoAM will continue to be maintained and updated, with each solution promptly 
implemented in the code, providing RoAM with the capability to handle a growing number of 
samples of different types.  

To showcase the algorithm, we conducted methylation reconstruction on 14 pre- and post-Neolithic 
revolution samples from the Balkans, and identified four DMRs that distinguish between them. The 
genes associated with these DMRs provide insights into understanding dietary changes that were 
induced by the Neolithic revolution. Two classic hypotheses claim that hypoinsulinism in pre-
Neolithic revolution hunter gatherers provided an adaptive advantage. The carnivore connection 
hypothesis (61, 62) suggests that hunter-gatherers diet was high in protein and low in 
carbohydrates, and that in such conditions, insulin resistance would confer an evolutionary 
advantage, as it allows redirection of glucose to specific requirements such as embryonic 
development and brain functions. The thrifty genotype hypothesis (63) suggests that hypoinsulinism 
was a preferred strategy for storing food in times of food scarcity due to the instability in food 
sources. Glucose is specifically important for fetal development and to the function of the brain, and 
therefore hypoinsulinism can be a good adaptation to accommodate and supply the body needs 
when experiencing low or unstable glucose availability. In line with these claims, previous studies 
reported that hunter-gatherers from the north-western Kalahari display lower levels of blood insulin, 
while genetically similar communities that have adopted a sedentary lifestyle for 15 years show an 
increase in insulin levels during this period (64, 65). Additional work showed that short term 
consumption of a paleolithic diet can decrease insulin secretion (66). These works indicate 
hypoinsulinism in hunter gatherers, and specifically at lower insulin secretion. Our most pronounced 
DMR resides in PTPRN2, suggesting overexpression of this gene in post-Neolithic revolution 
individuals compared to pre-Neolithic revolution ones. Given its role in insulin secretion in response 
to glucose, this finding lends further credence to the claim that hunter-gatherers experienced 
hypoinsulinism. Further evidence for methylation changes in PTPRN2 that correlate with hunting and 
gathering lifestyle can be found in an independent study that compared methylation levels in 
modern hunter gatherers and genetically related farmers in Africa (35). In this study, PTPRN2 stand 
out as the gene with the third-highest number of differentially methylated sites, amounting to a 
total of 62 sites. 

Another DMR lies with the EIF2AK4 gene. EIF2AK4 regulates insulin level and sensitivity in response 
to varied dietary components, and specifically during amino-acid deprivation. Changes in the 
expression level of this gene may be linked to the dietary shift during the Neolithic revolution. A 
plausible explanation for this change could be attributed to food scarcity, potentially resulting in the 
deprivation of certain amino acids for hunter-gatherers. 

We also found a DMR within the SLC2A5 gene. This DMR is filtered out because of our very strict 
criteria, but it was just below the threshold, so we decided to discuss it here, as it might be 
potentially related to the Neolithic dietary transition. SLC2A5 is a fructose transporter, whose 
expression levels change when fructose consumption is increased. Our data do not allow us to 
determine the sign of the correlation between the methylation in this DMR and the gene expression, 
hence we cannot conclusively determine whether the methylation changes are associated with up or 
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down regulation of this gene in post-Neolithic revolution times. However, we do observe a notable 
methylation change in this gene, that warrants further experimental examination. 

It should be recognized that the DMRs we detect here likely represent just a small minority of the 
methylated changes that accompanied the Neolithic transition. First, we have used very strict 
filtering criteria, increasing precision on the expense of sensitivity. Second, the use of DNA 
methylation maps from bones means that we are able to identify only those methylation changes 
that occurred very early during embryogenesis, and simultaneously affect multiple tissues (4). We 
will not be able to observe tissue-specific methylation changes, where the methylation change is not 
shared with bone. We anticipate the existence of such tissue-specific methylation changes, 
particularly in genes associated with immune functions and metabolism. 
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Tables 
Sample name Group Sample Age 

(K years) 
Location Coverage 

I1507 Pre-Neolithic revolution 7.7 Hungary (Tiszaszolos-
Domaháza) 

22.42 

I4873 Pre-Neolithic revolution 7.9 Serbia (Vlasak) 25.76 
I4875 Pre-Neolithic revolution 8.5 Serbia (Vlasak) 21.48 
I4877 Pre-Neolithic revolution 8.5 Serbia (Vlasak) 27.44 
I4878 Pre-Neolithic revolution 7.8 Serbia (Vlasak) 25.3 
I4914 Pre-Neolithic revolution 8.1 Serbia (Vlasak) 24.85 
I5233 Pre-Neolithic revolution 8 Serbia (Padina) 23.55 
I5235 Pre-Neolithic revolution 10.8 Serbia (Padina) 25.61 
I5236 Pre-Neolithic revolution 10 Serbia (Padina) 26.91 
I1116 Post-Neolithic revolution 1 Serbia (Gomolova) 26.97 
I1496 Post-Neolithic revolution 7 Hungary (Apc-Berekalya I) 29.96 
I2520 Post-Neolithic revolution 5.1 Bulgaria (Dzhulyunitsa) 24.47 
I5077 Post-Neolithic revolution 7 Croatia (Sopot) 27.79 
I5725 Post-Neolithic revolution 2.5 Croatia (Sv Kriz) 27.49 

Table 1. List of samples used in this work. Sample names are taken from the Allen Ancient Genome 
Diversity Project. 

 

Chrom. DMR start 
(hg19) 

DMR end 
(hg19) 

Qmax # 
CpGs 

Gene Pre-
Neolithic 
revolution 
methylation 

Post-
Neolithic 
revolution 
methylation 

Methylation 
difference 

7 157405128 157407252 406.4 145 PTPRN2 0.36 0.65 0.29 
2 131008391 131011881 311.9 119  0.35 0.64 0.29 
19 12983432 12985003 287.4 118 MAST1 0.50 0.77 0.27 
15 40266418 40269319 255.8 79 EIF2AK4 0.40 0.74 0.34 

Table 2. DMRs separating pre- and post-Neolithic revolution samples from the Balkan (ordered by 
𝑄𝑄max, from largest to smallest). 
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Figures 

 

Figure 1. The RoAM pipeline is split into two parts. In Part I, RoAM starts with BAM files of ancient 
genomes, and reconstructs the individual methylation maps. In Part II, RoAM detects differentially 
methylated regions (DMRs) distinguishing two groups of ancient samples. (created with Biorender) 
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Figure 2. Genome-wide histograms of methylation levels (chromosome 1). Ancient DNA methylation 
in sample I1116 was reconstructed by RoAM (blue) and by DAMMET (green). Two modern bone 
samples are shown. One (yellow) was used as a reference in RoAM, and another (purple) that was 
not used in RoAM. 

 

Figure 3. The DMR within the PTPRN2 gene. A) Reconstructed DNA methylation of the 14 Balkan 
samples. The DMR (dashed vertical lines) distinguishes between post-Neolithic revolution samples 
(upper lanes) and pre-Neolithic revolution ones (lower lanes). Methylation is color coded, from low 
methylation in green to high methylation in red. Lower lanes describe the genomic locations of CpG 
islands (CGIs) and genes. This DMR intersects a CpG island. B) Expression level of the PTPRN2 gene as 
a function of the mean methylation within the DMR, in 22 modern human tissues. 
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Figure 4. Additional DMRs (bounded by dashed vertical lines) that distinguish between post-
Neolithic revolution samples (upper lanes) and pre-Neolithic revolution ones (lower lanes). 
Methylation is color coded, from low methylation in green to high methylation in red. Lower lanes 
describe the genomic locations of CpG islands (CGIs) and genes. A-C) The additional three DMRs 
detected in the analysis. D) The DMR with the highest 𝑄𝑄𝑚𝑚𝐷𝐷𝑚𝑚 that did not pass significance threshold. 
All DMRs intersect CpG islands. 
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