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bstract

The Lorentzian model is a powerful feature extraction technique for electronic noses. In a previous work, it was applied to single-peak transient
ignals and was shown to achieve lower classification error rate than other feature extraction techniques. Here, we generalize the Lorentzian model
y showing how to apply it to transient signals that are comprised of more than a single peak. The model is based on a fast and robust fitting of

he measured signals to a physically meaningful analytic curve. We show that this model fits equally well to sensors of different technologies and
mbeddings, suggesting its applicability to a diverse repertoire of sensors and analytic devices.
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. Introduction

Retrieving information from large datasets usually involves a
eature extraction stage, aimed at reducing data dimensionality.

good feature extraction technique is measured by how well
he condensed representation preserves the information content
f the original data. Electronic noses (or, in short, eNoses) are
nalytic devices that play a constantly growing role as general
urpose detectors of vapor chemicals [5]. The main component
f an eNose is an array of non-specific sensors, i.e., sensors that
nteract with a broad range of chemicals with varying strengths.
orrespondingly, an analyte stimulates many of the sensors in

he array and elicits a characteristic response pattern.
The sensors inside an eNose are made of diverse technolo-

ies. Depending on the type of sensor, a certain physical property
s changed as a result of an exposure to gaseous analytes. Dur-
ng the measurement process, a signal is obtained by constantly
ecording the value of this physical property. A typical eNose

ignal is comprised of a few hundred measured values per sen-
or, thus giving rise to a rather large dataset. A preceding stage
f feature extraction is therefore almost mandatory. The most
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ommonly used methods (see examples in Fig. 1) capture only a
ortion of the information contained in the signals. Even though
hese methods are satisfactory for some applications, it is gen-
rally accepted that performance can be enhanced by the use of
ore optimal methods.
One such method, the Lorentzian model, was suggested in [1].

dditional proposals can be found, e.g., in [4]. The Lorentzian
odel is based on fitting the measured signal to an analytic curve,

eveloped using simple assumptions regarding the measurement
ystem and the interaction between an analyte and the sensors.
he resulting feature extraction technique uses four parameters

o characterize each signal, and was shown to significantly out-
erform other techniques [1]. A demonstration of the fit between
he measured signal and the analytic one is shown in Fig.2.

The Lorentzian model assumes single-peak transient signals
see Fig. 2), and is consequently appropriate for ordinary sig-
als obtained by transient measurement. In practice, however,
easured response signals occasionally exhibit abnormal signal

hapes, thus posing difficulties for the Lorentzian technique. We
ay classify the abnormal signals into two categories:

1) Corrupted signals: Occur when the sensor (or its supporting
electronics) fails at a certain time during the measurement
and then recovers and continues measuring; see Fig. 3a, b

and d. Corrupted signals can be further classified into three
different sub-types, see [2].

2) Multi-peak signals: Occur when the signal exhibits more
then one significant peak; see Fig. 3c and d.

mailto:refael.haddad@weizmann.ac.il
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ig. 1. Definition of the four most popular features in transient signals. (a) The d
c) The area under the curve left of the peak, Amax

i . (d) The time from the begin

In its original form, the Lorentzian feature extraction tech-
ique cannot be applied to abnormal signals. Nevertheless, it
as later shown that damaged parts of corrupted signals can
e restored [2], making such signals appropriate for application
f the Lorentzian feature extraction technique. Still, multi-peak
ignals kept defeating most feature extraction techniques, and
ere usually left outside of the analysis. In this paper we aim

t changing this situation by suggesting a generalization of the
orentzian feature extraction technique, enabling it to be applied

o multi-peak signals as well.
To this end, it is beneficial to interpret a multi-peak signal as if

ach peak is produced by a different subset of components of the
ncoming stimulus. We can further assume that each individual
eak has the typical Lorentzian shape described in [1], such that
he overall signal is just a superposition of Lorentzian signals.

e show that such a model yields excellent fits to measured
ignals, and gives rise to an informative and powerful feature
xtraction technique.
Our work renders the Lorentzian feature extraction technique
pplicable to any kind of transient signal obtained in the labo-
atory. In contrast, most feature extraction techniques that we
re aware of fail in at least one of the abnormal signal classes.

ig. 2. A typical signal (cis-3-hexenyl acetate) measured with a QMB sensor
nd the result of using the Lorentzian model.
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nce between the peak and the baseline, ψmax
i . (b) The area under the curve, Ai.

of the signal to the peak Tmax
i .

his fact further broadens the scope and applicability of our
ethod.

. Experimental

We have tested our algorithm using data collected by the
OSESII eNose [7] with two sensor modules: an eight-sensor

uartz-microbalance (QMB) module, and an eight-sensor metal-
xide (MOX) module. The samples were put in 20-ml vials in
n HP7694 headspace sampler, which heated them to 40 ◦C and
njected the headspace content into MOSESII. There the analyte
as first introduced into the QMB chamber, whence it followed

o the 300 ◦C heated MOX chamber. The injection lasts 30 s, and
s followed by a 15 min purging stage using synthetic air.

The dataset comprised 70 volatile odorous pure chemicals,
ntentionally chosen from many different chemical families, so
hat they would represent a broad range of possible stimuli. Each
hemical was measured in batches, with a single batch contain-
ng at least seven successive measurements. In total, we per-
ormed 675 measurements. Of the 70 chemicals measured, 54
ad their sensors properly responding; whereas 16 (∼20%) had
t least one signal with more than a single peak. Interestingly, the
ulti-peak phenomenon is twice as abundant in QMB signals

han in MOX.

. The generalized lorentzian model

As mentioned earlier, we adopt the interpretation that each

eak in the signal ensue from a different subset of mixture
omponents. Theses subsets are probably characterized by sig-
ificantly different volatilities, causing them to exhibit a kind
f chromatographic effect in their path through the eNose’s
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Fig. 3. Abnormal signals. (a) A failure in a measurement. Note that the corruption is only temporary, and afterwards the signal resumes its typical behavior. (b)
A on of
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the peaks, and θ = θ1 ∪ θ2, θi = {βi, τi, ti , Ti}, i = 1, 2, is the
set of all parameters. It is hereinafter assumed that L1 is the
earlier (left hand-side) peak, while L2 is the later (right hand-
side) peak. Our assumption states that L1(t; θ1) and L2(t; θ2)
failure in a measurement, realized as a Plateau indicating electronic saturati
ehavior. (c) A double-peak signal. (d) A measurement exhibiting all kinds of p

ipeline. In fact, each such subset of the mixture components
eed not be a pure chemical, and may be a mixture in itself.

For simplicity, we limit the following discussion to the case
f two peaks, but the results can be readily generalized to more
eaks. Interestingly, in our case, 99.9% of the multi-peak signals
btained were actually double peaks, so that only in a handful
f cases did we have to deal with more than two peaks.

In [1] a simple physical description of the measurement sys-
em was used to derive the analytic expression for the shape of
he response signal, explicitly given by

(t; θ) =

⎧⎪⎪⎪⎨
⎪⎪

0, t < t0,

βτ tan−1
(
t−t0
τ

)
, t0 ≤ t ≤

[ ( ) ( )]
⎪⎩
βτ tan−1 t−t0

τ
− tan−1 t−t0−T

τ
, t > t0 + T.

ere, t0 is the time when the signal starts to rise, T the time
nterval between the signal rise and its peak, τ a characteristic
the measurement system. Again, after a while, the signal resumes its typical
ena—failure, saturation and double-peak.

f the signal’s decay time, β relates to its amplitude, and θ =
β, τ, t0, T } represents the entire set of parameters.

A linear decomposition of two Lorentzian signals would then
e

(t; θ) = L1(t; θ1) + L2(t; θ2), (2)

here L1 and L2 are the Lorentzian signals describing each of
0
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epict the Lorentzian signals that would have been obtained had
e measured the low-volatiles and the high-volatiles separately.

.1. Implementation

The parameter set θ is found by fitting the analytic model
2) to the measured signal. Since this function is not every-
here differentiable, we could not use gradient based methods

or the curve fitting, and preferred the Matlab function fmin-
earch, which uses the simplex method [6]. It is the custom in
urve fitting to minimize the sum of squared differences between
he measured signal and the analytic one. However, since a typi-
al transient eNose signal has a relatively long decaying part (in
ost cases more than half of the signal duration, see example in
ig. 2), we used a weighted cost function for the minimization,
iving the points before the decay part twice the weight.

To this end, we have divided the signal s into two parts s1 and
2, where s1 represent the values of the signal from the start until
he decay of the second signal and s2 represent the rest of the
ignal. We then compute the best-fitting single-peak Lorentzian
odel, and, based on this function we define l1 and l2, where l1

s the calculated Lorentzian function for the first signal part and
2 for the remaining part. The weighted cost function formula
as therefore,

= 2(s1 − l1)2 + (s2 − l2)2.

his modification significantly improves the convergence rate
f the curve fitting algorithm.

The speed of convergence and accuracy of the solution are
usceptible to the initial values that we assign to the different
arameters. As all the parameters are physically meaningful,
e are able to supply a rather accurate initial guess, based on

he following procedure:

Estimating Ti and t0i for i = 1, 2. Due to the superimposition
of the two signals, finding Ti and t0i is somewhat subtle. In
the following, t and h stand for time and signal height, re-
spectively. The first step is to find the rising time of the entire
signal, t1, which is assumed to be the rising point ofL1(t; θ1).
Then, we find the points where the first and second signals
obtain their maximum,

Pmax
i = (tmax

i , hmax
i ), i = 1, 2.

Clearly, these maximum points are not identical to the maxi-
mum points of L1 and L2. These, as well as the rising point
of the second signal, are inferred from the a simple linear
extrapolation procedure shown in Fig. 4. Using this linear

extrapolation we find that the value of L1 at tmax

2 and the
value of L2 at tmax

1 . We mark these points as Ei

Ei = (tmax
i , nsi), i = 1, 2,

able 1
nitial values used for τ1 and τ2 that are used as inputs for the curve fitting process

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

τ1 10 10 5 5 10 7 7 5
τ2 70 100 40 80 120 166 90 80

F
fi

ig. 4. Extrapolating the original maximum values. The lengths of the blue lines
re the new extrapolated maximum values.

where nsi is the extrapolated height of Li for i = 1, 2. The
new maximum values are calculated by subtracting the ex-
trapolated pointsEi from the current maximum pointsPi (see
Fig. 4).
Estimating τi for i = 1, 2. We have estimated τ1 and τ2 fol-
lowing the same strategy as in [1], namely averaging over
approximated results from the entire dataset. The results for
each of the 16 sensors are given in the Table 1. It should be
noted that the estimation of τi is data-specific, and the values
in Table 1 will have to be recomputed for any dataset with is
essentially different from ours.

The decay time of the second signal is always significantly
larger (signifying a slower decay) than that of the first sig-
nal. This can be clearly seen both from the table and from
the example given in Fig. 3c and d. This difference in de-
cay rates can be explained by the fact that the second signal
corresponds to a heavier stimulus, resulting in slower rise
time and decay time. Note that τ1 values are not the same
as the ones we used in [1]. This is because the decay of the
lighter signal is slowed due to the presence of the second
signal.
Estimating βi for i = 1, 2. For βi we use the same formula as
in [1],

βi = smax
i

τi tan−1(Ti/τi)
, i = 1, 2.

. Results
S1 S2 S3 S4 S5 S6 S7 S8

40 20 50 40 30 40 30 50
93 250 250 250 200 150 200 300

A sense of how well is the fit that we get can be found in
ig. 5, which shows two examples of generalized Lorentzian
ts to measured signals.
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Table 2
Averages and medians of the R2-test, applied to our curve fitting process, for
theo analytic models

Sensor Lorentzian Exponential

Average Median Average Median

Q1 0.9943 0.9954 0.9901 0.9915
Q2 0.9927 0.9929 0.9898 0.9910
Q3 0.9937 0.9947 0.9720 0.9876
Q4 0.9942 0.9947 0.9892 0.9901
Q5 0.9934 0.9943 0.9908 0.9928
Q6 0.9915 0.9908 0.9881 0.9889
Q7 0.9945 0.9959 0.9751 0.9925
Q8 0.9964 0.9974 0.9915 0.9944
S1 0.9893 0.9929 0.9664 0.9894
S2 0.9897 0.9904 0.9460 0.9870
S3 0.9893 0.9931 0.9257 0.9906
S4 0.9889 0.9935 0.8928 0.9951
S5 0.9933 0.9964 0.9693 0.9935
S6 0.9894 0.9919 0.9310 0.9824
S7 0.9890 0.9909 0.9588 0.9827
S8 0.9908 0.9914 0.9715 0.9871
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Fig. 5. Two examples of the Lorentzian model fitted to a measured double peak
signal. The red line depicts the original signal, while the black depicts the best
fitting generalized Lorentzian model. The two dashed lines show the two in-
dividual Lorentzian signals that are superimposed to reconstruct the measured
double peak singal.

Table 3
The success rate of three different classification methods using the two feature
extraction methods discussed in the text

Signal height (%) Generalized Lorentzian (%)

Bayes 63.94 72.72
KNN 68.68 70.60
Perceptron 66.05 84.53

As can be seen, the generalized Lorentzian model gives higher classification
r
u
a

s
h

1–Q8 are the eight QMB sensors, and S1–S8 are the eight MOX sensors. For all
ensors, whether QMB or MOX, the Lorentzian model gives superiorR2-values,
lthough both models are quite good.

To quantify how well a model fits the data, we used the well
nownR2-test [3] for goodness-of-fit. This test is bounded from
bove by 1, and the closer it gets to 1, the better the fit in the least
quares sense. The advantage of the R2-test is that it measures
oodness-of-fit on a normalized scale, thus enabling comparison
etween differently scaled signals. We tested our model against
ll 300 × 8 QMB signals, and 300 × 8 MOX signals, and cal-
ulated the average and the median of R2. This time we did not
se a weighted cost function as we want to compare how well
he resulting signals fit the original ones. The results are shown
n Table 2.

To evaluate the quality of the results, we compared them to
hose that are obtained by using the exponential model instead
f the Lorentzian model. The exponential model was developed
n [1] as an alternative to the Lorentzian model; it is given by

(t; θ) =

⎧⎪⎨
⎪⎩

0, t < t0,

βτ(1 − e−(t−t0/τ)), t0 ≤ t ≤ t0 + T,

βτ(eT/τ − 1) e−(t−t0/τ), t > t0 + T.

(3)

Again, the entire signal is assumed to be a superposition of
wo exponential signals. In a way, the exponential model is more
atural in that it assumed the familiar exponential decay, but
n [1], the Lorentzian model was shown to yield better clas-
ification. Here, too, we show that the generalized Lorentzian
odel is preferred to the generalized exponential model; see
able 2.

As eNoses are mostly used for the purpose of classifica-
ion, it is a good practice to test how well our feature extrac-
ion technique allows to discriminate between different odor-

us mixtures. In Table 3 we compared the success rate of three
lassification methods using two versions of feature extraction
echniques: the popular signal height (taking the height of the
ighest peak), and our generalized Lorentzian model. As can be

5

w

ates. The analysis was carried out on a set of 390 odor signal samples, measured
sing the MOSESII electronic nose. The data was classified into two groups
ccording to some specific odor property.

een from the this table, the generalized Lorentzian model gives
igher classification rates.
. Discussion

We have reason to believe that a multi-peak signal occurs
hen the input mixture can be divided into disjoint sub-mixtures,
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Fig. 6. Double peaks with two fitting Lorentzians. The dashed blue curve is
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he first signal and the dashed green one is the second, the red curve is the
uperposition of the two curves. Note that it is hard to tell if this is a true double
eak signal or a signal with a failure section.

aving significantly different volatilities. Previously, the com-
on practice was to discard such signals prior to the application

f any data analysis technique, thus potentially loosing valu-
ble information. The present work, combined with the results
n [2] on remedying corrupted signals, enable the utilization of
on-standard signals in the data analysis.

After a multi-peak signal has been decomposed into its single-
eak constituents, it is left to the user to decide which of them to
se for the analysis. In many cases, one of the peaks is caused by
ome contamination of the sample, in which case the stronger
eak should be used for subsequent analysis. In other cases, a
ery rapid first peak is caused by large values of humidity in the
ample and then comes the following signal, which carries the
mportant information. Sometimes, we suggest comparing the
esults with other datasets as a strategy to decide on the nature
f the two peaks. In the absence of any external knowledge, we
ay suggest to use both peaks in the analysis and to examine
hich of them gives a result that is more consistent with the
ther results.

Whenever one of the peaks reflects the impact of an undesir-
ble element (like contamination or humidity), its removal will
esult in a cleaner signal. This might serve as a remedy to the
ell documented sensitivity to humidity in eNoses.
Identifying multiple peaks is a technical question with broad

ractical implications. Sometimes, as is demonstrated in Fig. 6,
t is hard to decide if the signal under inspection is corrupted
r is simply a multiple-peak signal. This situation is quite rare

n our dataset, as most of the failures are easily identified (see,
.g., Fig. 3). In these few cases where we have doubts, we can
ecide on the signal classification using a simple test involving
he signal height in the vicinity of the two peaks. We rely on

a
c
s
r
2

ators B 120 (2007) 467–472

he observation, at least true to the specific dataset used, that
ach sensor has a typical range of response, for example, the first
MB sensor (Q1) usually has its peak in the range of 1900–2200.
failure occurs when the sensor is driven above its “normal”

perating range. Therefore, if the double peak occurs for very
igh readings of the sensor, we assume that it is a failure, while
f it occurs for low readings, we regard it as a double-peak. For
xample, in Fig. 6, the abnormal signal shape is associated with
double peak and not with a failure.
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