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Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of
some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene
content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare
evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss
of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic
model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided,
using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in
internal nodes) and events (gain and loss events along branches).

1. Introduction

Reconstruction of genome evolution critically depends
on underlying evolutionary models. Many such models,
whether implicit or explicit, have been proposed, reflecting
different approaches to model design [1]. Probabilistic mod-
els, which describe the likelihoods of evolutionary events
along the branches of a phylogenetic tree, are among the
most commonly used. With the accumulation of genomic
data and the advances in computational power, these models
are becoming increasingly detailed and powerful. However,
the models that have been most extensively explored relate to
sequence evolution; whereas evolution of binary characters
has received much less attention. Here, we propose a general
probabilistic model of evolution of binary characters. While
originally developed to study the evolution of eukaryotic
gene architecture, the model is formulated in general nota-
tions and would apply to diverse classes of binary characters.

For example, the model can be used to study the evolution
of gene content among species, or the evolution of genomic
markers, morphological characters, and the like. The model
assumes that the events along a particular branch at a given
site depend on the properties of both the site and the branch.
Moreover, the model can accommodate rate variability
between sites. A fast and flexible software implementation is
offered that can be used to analyze any submodel of the gen-
eral model. In order to estimate the parameters of the model
and to reconstruct ancestral states, an efficient expectation-
maximization algorithm, which allows for missing data in
the input, was developed. The software can also be used in
a simulative mode, generating simulated input data.

2. The Model of Evolution

For the sake of concreteness, we present the model in terms
of gene architecture, so the binary characters designate the
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Figure 1: A fragment of a hypothetical input for a 4-species analy-
sis. This is a segment of a multiple alignment of 4 orthologous genes.
Notice the gap in one of the genes, designated by ∗ for unknown
character. Among the 10 sites in this alignment fragment, there
are 6 unique patterns; ω1 = (0, 0, 0, 0)T , ω2 = (0, 1, 0, 1)T , ω3 =
(1, 1, 0, 1)T , ω4 = (0, 0, 1, 1)T , ω5 = (0,∗, 1, 1)T , and ω6 =
(0,∗, 0, 1)T . This portion of the alignment, therefore, contains 2
copies of ω1, 2 copies of ω2, 3 copies of ω3, and one copy each from
ω4, ω5, and ω6.
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Figure 2: A bifurcating tree with 4 terminal nodes, and 3 internal
nodes. Branches are numbered by the node into which they lead.

presence or absence of an intron in a particular locus.
However, with trivial notational changes, the model is
equally applicable for describing evolution of other types of
binary characters.

A length ng multiple alignment of a gene across S species
can be described by a matrix of size S × ng . For analysis
of binary characters, each such matrix is defined on the
alphabet {0, 1,∗ }, with a star (∗) indicating a missing value.
Each column represents the presence or absence of the binary
character at this site (Figure 1). For G genes aligned for the
same set of species, we have a collection of G matrices. Any
column in one of the multiple alignments is a vector of length
S and is called a pattern. Let T be the phylogenetic tree whose
tips match these S species, and let us index its nodes by
0, 1, . . . , 2S − 2, with the convention that 0 is the index of
the root. We use the same indexing for the branches, with
the convention that branch i leads into node i (Figure 2). We
assume that the topology of T , as well as all branch lengths,
Δ1, . . . ,Δ2S−2, is known.

Let qt denote the state of node t (i.e., 0 or 1), and let
qPt be the state of its parent node. We denote by T(g, t) the
transition matrix, such that Tij(g, t) = Pr(qt = j | qPt = i, g)
is the probability of finding node t in state j given that its

parent node is in state i, and given that we are looking at gene
g. The evolutionary model assumes

T
(
g, t
) =

⎛

⎝
1− ξt

(
1− e−ηgΔt

)
ξt
(
1− e−ηgΔt

)

1− (1− φt
)
e−θgΔt

(
1− φt

)
e−θgΔt

⎞

⎠. (1)

Here, ξt and φt are the intron gain and loss coefficients of
branch t, and ηg and θg are the intron gain and loss rates
of gene g. Clearly, the overall probability of gain, loss, or
retention of an intron in gene g along branch t depends
on both the particular gene and the particular branch. For
instance, the probability of an intron to be gained in gene
g along branch t includes a contribution of the branch (ξt),
and a contribution of the gene (1 − e−ηgΔt ). To complete the
probabilistic model on the phylogenetic tree, we define π0 as
the probability of the root to be in state 0 (i.e., to be lacking
an intron) at a particular site.

Note that, in the absence of the branch-specific coeffi-
cients (ξt = 1 and φt = 0), the transition matrix defines
a two-state continuous-time Markovian process. Such a
model is popular in evolutionary studies and is implemented
in widely used software, such as PAML [2], PHYLIP [3],
and PAUP∗ [4]; a number of expectation-maximization
algorithms have been designed to analyze similar Markov
processes on phylogenetic trees [5–7]. However, these models
cannot take into account the combined influences of the
branches and the genes and therefore are not applicable
under our model.

In sequence evolution, rate variability among sites is cus-
tomarily accommodated by introducing a random variable r
with unit mean, known as the rate coefficient. This coefficient
is used to scale the time units of the phylogenetic tree for each
particular site, reflecting a distinction between fast-evolving
sites and slow-evolving ones [8, 9]. We use a similar idea here,
but in order to keep the gain and loss processes independent,
two independent rate coefficients are introduced, rη and rθ ,
to scale the gene-specific gain and loss rate parameters, ηg ←
rη · ηg and θg ← rθ · θg . The rate coefficients are assumed to
be distributed according to the following distributions:

rη ∼ νδ
(
η
)

+ (1− ν)Γ
(
η; λη

)
,

rθ ∼ Γ(θ; λθ).
(2)

Here, Γ(x; λ) is the unit-mean gamma distribution of variable
x with shape parameter λ, δ(x) is the Dirac delta function,
and ν is the fraction of sites that are incapable of gaining the
character and are denoted zero sites.

We have developed an expectation-maximization algo-
rithm to find the maximum likelihood estimators of the
model parameters [10, 11]. The full model is described by
2G+ 4S parameters. This number might become exceedingly
high and results in high variance to the estimates. To
circumvent this problem we have developed a two-phase
analysis procedure [12, 13]. In the first, homogeneous phase,
the genes are assumed to have the same gain and loss rates,
thus they are all treated as one concatenated supergene. This
sets G = 1, reducing the number of parameters to 2 + 4S. In
the second, heterogeneous phase, all the parameters estimated
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in the homogeneous phase are frozen, and only the gene-
specific parameters are estimated. Extensive simulations had
proved the effectiveness of this procedure (see below).

As indicated above, we used this model to study the
evolution of the intron-exon gene architecture in eukaryotes.
In this case, a coding nucleotide position is marked with 1
if an intron got inserted into the sequence right after it. We
generated a set of G = 391 orthologous genes upon which
we marked the presence or absence of the introns. We ran
the model upon this data and computed intron gain and loss
coefficients for the different lineages [12], and intron gain
and loss rates of the different genes [13].

3. The Software Tool

The software, named EREM after Evolutionary Recon-
struction by Expectation-Maximization, was written in
C++ using Microsoft Visual Studio.NET 2003, and is
available from ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/erem/;
or http://carmelab.huji.ac.il/software.html. In the web site
we provide the source code in both Windows and Unix
versions (the latter version is courtesy of Stajich et al.
[14]), a compiled executable tested under Windows XP, and
full documentation. EREM is designed to perform three
different tasks. First, based on the input data, it can estimate
the parameters of the model by likelihood maximization.
Second, it can reconstruct ancestral states and events along
the phylogenetic tree. Third, one can run the software in
a simulation mode, where the phylogenetic tree and/or the
input data matrices are randomly generated.

To empirically assess the speed of EREM on a large data
set, we performed simulations on a 19-species tree with genes
containing a total of 105, 3·105, or 5·105 sites. On a Pentium
3 GHz machine, this took, on average, 4.2, 9.6, and 12.3
minutes, respectively.

4. Parameter Estimation

The maximum likelihood estimation of the model parame-
ters is computed by an expectation-maximization algorithm
[10, 11]. This algorithm is a general iterative scheme that
guarantees an increase in the likelihood at the end of
each iteration. Every iteration is built of two computational
procedures, called the expectation step (E-step) and the
maximization step (M-step). Briefly, the E-step in our case is
carried out using a series of recursions along the phylogenetic
tree. In the M-step, the auxiliary function computed at the
E-step is maximized in a parameter-by-parameter fashion,
using low-tolerance one-dimensional maximization proce-
dures.

For the full model, some combinations of parameters
form invariants (yielding the same ancestral reconstruc-
tions), thus the values estimated for some individual param-
eters are hard to interpret. The fundamental output to
be analyzed is therefore the ancestral reconstruction (see
next section) and not the estimated values of the model
parameters.

5. Ancestral Reconstruction

Given the model parameters, EREM computes two types of
ancestral reconstructions: (a) the average occupancy fraction
(average number of sites with state 1 in any particular gene
and in any particular node); (b) the average number of
character gains, losses, or retentions that occurred for each
gene along each branch. Simulations have shown that the
reconstructions are highly accurate. Applied to an intron-
exon data set, we obtain a relative error of 1%, 3%, and 11%
in estimating the number of introns in internal nodes, the
number of loss events along each branch, and the number of
gain events along each branch, respectively [12].

EREM can output both a detailed gene-by-gene ancestral
reconstruction report, as well as an overall report, summing
the results of all the individual genes.

6. Simulation Mode

One can run EREM in a simulation mode, in which it can
randomly generate any of the two types of inputs: (a) a
phylogenetic tree, the user only provides the number of
terminal nodes and the time span of the tree; (b) alignment
matrices for any number of genes. Here, a model is either
provided by the user or is randomly generated. Then, it
is used to simulate evolution along the given or simulated
phylogenetic tree.

7. Input Files

EREM requires an input file which has the form of a
formatted text file. The website contains a full description,
with examples, of this file and all other files discussed here.
If the phylogenetic tree is not simulated, the user should
provide it (see the web site for the acceptable formats).

If the set of alignment matrices is not simulated, it should
be supplied by the user in the form of two text files. The first
file lists all the unique patterns in the data, and the second file
lists, for each gene, the counts of each of the unique patterns.

8. Output Files

The primary output of EREM is a formatted text file
that summarizes the input, the values of the estimated
parameters, and the overall ancestral reconstruction. Also,
for each estimated parameter, EREM produces a history file,
which records how the value of this parameter changed along
the iterations.

If a detailed, gene-by-gene ancestral reconstruction was
requested by the user, EREM outputs a special text file
providing this information. Additionally, if the phylogenetic
tree was simulated, the information about it is kept in
another text file. If the input data were simulated, the two
summary files describing it (see previous section) are stored
as text files. In this simulation mode, the user can also
request to store the actual state of each site in each node of
the tree, for the purposes of comparison with the ancestral
reconstruction computed by EREM.
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9. Matlab Auxiliary Functions

We use Matlab as the chief tool to analyze the results.
Consequently, we have written a number of Matlab func-
tions (written for Matlab version R2006a) to facilitate the
interaction between Matlab users and EREM. The set of
functions can be downloaded from the web site. In particular,
these functions allow a Matlab user to generate input files, to
read output files, to analyze the ancestral reconstructions, to
visualize some of the results, and to compute error bars to the
estimations. We emphasize that these utilities are provided in
our website to facilitate analysis of EREM output and are not
an integral or necessary part of EREM.

10. Availability and Requirements

The website (ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/erem/
or http://carmelab.huji.ac.il/software.html) contains detailed
description of the formats of all input and output files, as well
as a number of examples. Also, a full description of all Matlab
auxiliary functions is provided.

The web site includes an executable for Windows XP
Professional, as well as C++ source code in Microsoft Visual
Studio.NET 2003 and in Unix (the latter version is courtesy
of Stajich et al. [14]).
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