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Abstract

A fundamental question in studying odor patterns in electronic noses is how to estimate the response to a mixture, given the response
curves of the pure chemicals. We study this question by proposing two mixture-predicting models, and verify them against real data
collected using quartz microbalance sensors. We find that a simple additive law explains fairly well the measured response patterns of
binary mixtures, but that a slightly more complicated mixing model is required in order to produce good estimations of the response patterns
of mixtures that are comprised of more than two compounds.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Electronic noses (eNoses) were not designed to do mix-
ture analysis. Rather, they were designed with the intention
of forming devices that are capable of discriminating be-
tween different odor samples. In this regard, an odor sam-
ple is any specific headspace content, comprised of a sin-
gle pure chemical or of a mixture of chemicals. Exactly
the same methodology should be used in order to train an
eNose to discriminate between methanol and ethanol[1], or
to discriminate between different types of olive oils[2]. In-
deed, by merely observing a measured signal, one cannot
tell whether the sample was a pure chemical or a mixture.

Nevertheless, eNoses are sometimes used for some form
of mixture analysis. If two mixtures contain the same in-
gredients but with different mixing ratios, they would gen-
erally produce distinct response patterns. This fact leads to
the possibility of designing algorithms that estimate mixing
ratios in a mixture whose ingredients are known[3].

Our group is interested in using eNoses for a com-
pletely different kind of mixture analysis. Several years
ago we sketched the building blocks of a visionary odor
communication system that enables an output device—the
whiffer—to release an imitation of an odorant read in by
an input device—thesniffer—upon command. We have
suggested to use eNoses as the sniffers, and are currently
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heavily involved in research to advance and implement this
scheme; see[4].

Such an odor communication system will not be feasible
unless it is supported by an algorithm that determines what
mixture to emit from the whiffer on any specific occasion.
Implementing such an algorithm—which in[4] we term the
mix-to-mimic(MTM) algorithm—is as yet beyond our reach,
but in [4] we suggested to devise it by gradually construct-
ing three sub algorithms, each adding a further complica-
tion. Upon the completion of the third, the full MTM will
be available. The first of these sub algorithms—theMTM1
algorithm—is aimed at “fooling” an eNose. That is, given
any pattern measured with an eNose, it should calculate that
mixture from a given set of odorants, whose pattern, when
measured with the same eNose, best mimics the original
pattern.

Developing MTM1 necessitates the understanding of how
patterns of mixtures are related to those of the individual
ingredients. Consequently, it seems reasonable to precede
the construction of MTM1 by formulating a model—thelaw
of mixing—that would do the following:

Given a known mixture composition, predict its response
pattern based on knowledge of the response patterns of
the mixture’s ingredients.

In this paper, we suggest two alternative laws of mixing
and examine them against measured data. We show that
the response of binary mixtures is fairly well approximated
using a simple additive law, but it fails on richer mixtures.
We then propose a more general law of mixing, and show
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that it enables excellent response predictions for any number
of ingredients in the mixture.

We are aware of only one group—the laboratory of Mori-
izumi and Nakamoto—whose work is similar; see, e.g.[5,6].
However, they adopted a hardware solution to the problem,
based on what they call an active odor system. However, it
appears that their solution works best if we have a prior in-
formation on the identity of the mixture ingredients (but not
on their mixing ratios).

In Section 2we describe our two laws of mixing.Section
3 describes the experimental setup and the datasets used for
validation. Our result are described inSection 4, followed
by a discussion inSection 5.

2. Two laws for mixing

Despite the similarity in the signal shape, there is a fun-
damental difference between the response of an eNose to
a pure chemical and to a mixture. In the former case, the
concentration-dependent response curves of the sensors
(hereinafter, theresponse curves) completely characterize
the system behavior. That is, given the stimulus concentra-
tion, the response pattern can be predicted straightforwardly
from these curves. For mixtures, however, things become
more complicated. In general, the response curve of a given
stimulus is modified in the presence of other stimuli, and
even if the mixture composition is known exactly, the re-
sponse pattern might be difficult to predict. In the rest of
this section we describe two models that try to quantify the
response of eNose sensors when chemicals are mixed.

Let r(o; c) denote the response of the eNose to an odorant
o in concentrationc, and letr(o1, o2, . . . , on; c1, c2, . . . ,
cn) stand for the response to the mixture ofo1, o2, . . . , on

in concentrationsc1, c2, . . . , cn, respectively. We define the
additive law of mixingto be:

r(o1, o2, . . . , on; c1, c2, . . . , cn)

= r(o1; c1) + r(o2; c2) + · · · + r(on; cn). (1)

This is the simplest mixing model, and it holds if the sen-
sor responds to each component as if the others did not ex-
ist. In general, this is not the case. First, the components in
the mixture might interact among themselves. Second, the
sensor capacity is limited, and different components are ex-
pected to “fight” for their place on the sensor’s active sur-
face. Still, if we choose non-interacting components (as we
have tried to do in our experiments), and keep the concen-
trations low enough so that the sensors are well below their
saturation level, we expect this law to be a reasonable ap-
proximation.

We may generalize this model and introduce thelinear
law of mixing:

r(o1, o2, . . . , on; c1, c2, . . . , cn)

= α1 · r(o1; c1) + α2 · r(o2; c2) + · · · + αn · r(on; cn).

(2)

which assumes mixture specific coefficients (to be denoted
by themixing coefficients), α1, α2, . . . , αn, that reflect the
relative influence of each component on the total mixture
response. Note that the additive law is subsumed by the
linear law, as the special caseα1 = α2 = · · · = 1.

3. Experimental

The algorithm was tested against data we collected using a
MOSESII eNose[7] with eight quartz microbalance (QMB)
sensors. The samples were put in 20-ml vials in an HP7694
headspace sampler, which heated them to 40◦C and injected
the headspace content into the electronic nose in a flow of
25 ml/min. The injection lasted for 20 s, and was followed
by a 15 min purging stage using synthetic air. Each stimulus
was measured in batches, with a single batch containing
several successive measurements.

In a single measurement, a sensor produces a signal over
time. Hereinafter, we define the response of a sensor in the
traditional way by taking the difference between the maxi-
mum of the signal and its baseline.We collected two differ-
ent datasets:

• Thepure chemicals datasetwas constructed from 10 pure
chemicals, each measured in six different concentrations.1

The chemicals and their concentrations were chosen so
that they all have comparable ranges of response. Each
sample was diluted in polyethylenglycol 400 (PEG-400),
and the concentrations were measured in molar fractions
(i.e., the ratio between the number of moles of the sam-
ple and the total number of moles in the solution). The
chemicals and their measured concentrations are listed in
Table 1. A chemical in a certain concentration was mea-
sured in batches of at least four successive measurements.
In total, this dataset consists of 269 measurements.

• The mixtures datasetwas used to test the performance
of the two laws of mixing. It consisted of binary, tri-
nary, quaternary and quinary mixtures of the above pure
chemicals, as listed inTables 2 and 3. Each of the mix-
tures was diluted in PEG-400 to obtain six different total
concentrations for the same mixing ratios (not shown in
tables). Each specific mixture dilution was measured in
batches of about seven successive measurements. All in
all, there were 27 binary mixtures (1095 measurements),
10 trinary mixtures (409 measurements), 11 quaternary
mixtures (452 measurements), and 1 quinary mixture (42
measurements). In total, there were 49 different mixtures
(each in six different total concentrations) and 1998 mea-
surements.

We measured concentrations as molar fractions in PEG-
400 solution. However, for each compound this number is

1 Except for 2,3-butanedione, which was measured only in four concen-
trations, and butyl butyrate, which was measured in five concentrations.
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Table 1
The pure chemicals and their concentrations

Chemical Abbreviation Concentrations measured (molar fraction)

1-Methylpyrrole M 0.0908 0.1665 0.2306 0.2855 0.3331 0.3747
1-Propanol P 0.1055 0.1909 0.2614 0.3206 0.3710 0.4144
2,3-Butanedione B 0.0918 0.1316 0.1681 0.2016 – –
2,6-Dimethylpyridine D 0.0711 0.1328 0.1867 0.2344 0.2768 0.3147
2-Methyl-2-pentenal MP 0.0721 0.1345 0.1890 0.2371 0.2797 0.3179
4-Methylanisole MA 0.0657 0.1233 0.1742 0.2195 0.2601 0.2967
Amyl formate A 0.0632 0.0919 0.1189 0.1443 0.1683 0.1910
Butyl butyrate BB – 0.0983 0.1406 0.1791 0.2142 0.2465
Isoamyl formate I 0.0633 0.0920 0.1190 0.1445 0.1685 0.1912
Toluene T 0.0770 0.1112 0.1430 0.1726 0.2002 0.2260

Molar fractions are measured in PEG-400 solution. The abbreviated names are used extensively throughout the paper.

Table 2
The Binary mixtures

Mixture Mixing ratios (v/v)

A:T 1:1 2:1 6:1 1:3 –
M:D 1:1 1:2 1:6 – –
B:I 1:1 2:1 1:3 – –
M:P 1:1 1:2 1:6 3:1 –
B:A 1:1 2:1 6:1 1:3 –
D:BB 1:1 2:1 6:1 1:3 3:7
I:T 1:1 2:1 6:1 1:3 –

Mixing ratios are given in liquid-phase volume-to-volume (v/v).

Table 3
Trinary, quaternary and quinary mixtures

Mixture Mixing ratio Mixture Mixing ratio

P:D:MA 1:1:1 M:P:MP:A 1:1:1:1
P:D:T 1:1:1 P:D:MA:BB 1:1:1:1, 1:2:1:2, 1:2:3:1,

2:1:2:1, 3:1:1:2
B:A:T 1:1:1 P:MA:I:T 1:1:1:1
B:I:T 1:1:1 MA:A:BB:I 1:1:1:1
P:D:BB 1:1:1 P:D:A:T 1:1:1:1
P:MA:BB 1:1:1 M:MP:I:T 1:2:1:2
D:MA:BB 1:1:1 D:A:BB:I 2:2:1:1
MA:A:BB 1:1:1 P:MA:A:I:T 1:1:1:1:1
D:A:I 1:1:1
A:I:T 1:1:1

Mixing ratios are given in liquid-phase volume ratios.

proportional to its headspace concentration, as we explain
in detail inAppendix A.

4. Results

4.1. Response curves of the pure chemicals

The response curves for the pure chemicals were recon-
structed from the measured points using three different tech-
niques:

1. The slope model: The response curve is assumed to be
r(o; c) = ac with a being some coefficient.

2. The linear model: The response curve is assumed to be
r(o; c) = ac + b, with a andb being some coefficients.

3. The spline model: The response curve is interpolated
from the measured points using cubic spline interpola-
tion (forced to go through the origin of the coordinates,
r(o; 0) = 0).

Fig. 1 shows two examples of spline response curves.
Clearly, when linearity is not so good (as inFig. 1b), the
spline is superior to the other two models. Whatever model
is used, the resulting monotonic response curve enables us
to calculater(o; c) for an arbitraryc.

4.2. Measures of the prediction quality

Let r0(o1, . . . , on; c1, . . . , cn) be the measured response,
and letr(o1, . . . , on; c1, . . . , cn) be the one calculated from
either (1) or (2). We define three measures for the closeness
of such two patterns:

1. Length deviationis the relative deviation in the length of
the vectors,||r0| − |r|| / |r0|. The closer it is to zero, the
better the overall response magnitude prediction.

2. Angleis the angle between the vectors. The closer it is to
zero, the smaller the deviation in the predicted direction
of the response vector.

3. Distance ratiois the ratio|r0 − r| / |r0|. The closer it is
to zero, the smaller the overall difference between the
measured vector and the predicted one.

4.3. Estimating the mixing coefficients

Let m be the length of the response vector, so that
r(oi; ci) ∈ Rm is an m-dimensional vector. We may rear-
range (2) in the matrix form:

R · α = rmix.

whereR ∈ Rm×n matrix whose columns arer(o1; c1), . . . ,

r(on; cn), α = (α1, . . . , αn)
T ∈ R

n, and rmix =
r(o1, . . . , on; c1, . . . , cn) ∈ Rm. If r0(o1, . . . , on; c1, . . . ,

cn) is the measured mixture response, we can findα as the
least-squares minimizer of

R · α = r0. (3)
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Fig. 1. Two examples of response curves (spline): (a) amyl formate; (b) 2,3-butanedione. Molar fractions are measured in PEG-400 solution.

Table 4
Comparing the three response curve models (med. is median and avg. is average)

Mixture Curve model Mixture law α1 α2 Length deviation Angle (◦) Distance ratio

Med. Avg. Med. Avg. Med. Avg.

A:T Slope Additive 0.022 0.03 0.85 1.1 0.03 0.037
Linear 0.9958 1.035 0.022 0.026 0.82 1 0.031 0.034

Linear Additive 0.02 0.025 1.6 2.1 0.038 0.048
Linear 1.005 1.006 0.023 0.025 1.6 2.1 0.041 0.049

Spline Additive 0.028 0.034 0.96 1 0.035 0.041
Linear 0.9726 1.05 0.02 0.027 0.94 0.97 0.028 0.034

M:D Slope Additive 0.19 0.21 2.3 2.8 0.2 0.21
Linear 0.717 1.02 0.024 0.049 1.9 2.3 0.045 0.069

Linear Additive 0.27 0.3 13 43 0.34 0.75
Linear 0.5954 1.477 0.12 0.18 72 33 0.21 0.51

Spline Additive 0.067 0.069 1.8 1.9 0.074 0.08
Linear 0.8388 1.123 0.023 0.04 1.8 1.8 0.04 0.055

B:I Slope Additive 0.062 0.064 1.4 1.5 0.065 0.071
Linear 0.9664 0.8889 0.017 0.026 1.3 1.4 0.027 0.038

Linear Additive 0.092 0.1 2 2.5 0.098 0.11
Linear 0.9583 0.8223 0.021 0.035 2.2 2.7 0.047 0.062

Spline Additive 0.048 0.062 1.2 1.1 0.05 0.067
Linear 0.9694 0.9127 0.031 0.053 1.2 1.1 0.037 0.059

If we use the same ingredients to form various mixtures
(say p of them) by changing the mixing ratios or the to-
tal concentrations (as we do in our experiments), then we
have many equations of the form (3),R1 · α = r1

0, . . . , Rp ·
α = r

p

0 for the same set of mixing coefficientsα. We
may now form a “super” matrix equation by definingR =
((R1)T, . . . , (Rp)T)T ∈ Rmp×n (putting theRi’s on top of
each other2), τ0 = ((r1

0)
T, . . . , (r

p

0 )T)T ∈ Rmp (putting the
ri
0’s on top of each other), and definingα as the least squares

2 The symbol T stands for matrix transpose.

minimizer of

R · α = τ0. (4)

4.4. Comparing the response curve models

We have used the mixings A:T, M:D and B:I (seeTable 2)
to compare between the three possible response curve mod-
els. The results are summarized inTable 4. Clearly, the spline
model stands out as the most powerful, always producing
good predictions. This is not very surprising, since, unlike
the two other models, the spline model does not try to fit
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Fig. 2. Measured (dots) vs. predicted (diamonds) points: (a) the additive law of mixing; (b) the linear law of mixing.

Table 5
Summary of the binary mixtures results (med. is median and avg. is average)

Mixture Mixture law α1 α2 Length deviation Angle (◦) Distance ratio

Med. Avg. Med. Avg. Med. Avg.

A:T Additive 0.028 0.034 0.96 1 0.035 0.041
Linear 0.9726 1.05 0.02 0.027 0.94 0.97 0.028 0.034

M:D Additive 0.067 0.069 1.8 1.9 0.074 0.08
Linear 0.8388 1.123 0.023 0.04 1.8 1.8 0.04 0.055

B:I Additive 0.048 0.062 1.2 1.1 0.05 0.067
Linear 0.9694 0.9127 0.031 0.053 1.2 1.1 0.037 0.059

M:P Additive 0.034 0.046 1.5 1.6 0.045 0.057
Linear 0.9816 1.038 0.035 0.049 1.6 1.7 0.047 0.062

B:A Additive 0.036 0.091 1.8 2.1 0.051 0.1
Linear 0.8248 1.049 0.033 0.057 1.4 1.5 0.039 0.067

D:BB Additive 0.069 0.084 1.5 1.6 0.073 0.092
Linear 0.7689 1.009 0.058 0.06 1.7 1.7 0.065 0.07

I:T Additive 0.057 0.052 0.99 1.1 0.062 0.057
Linear 0.9025 1.031 0.023 0.024 1.1 1.1 0.031 0.033

The slope curve model was used.

a predefined model to the data, but rather interpolates the
actual measured points. Consequently, we shall hereinafter
always use the spline model for the response curve.

4.5. Analysis of binary mixtures

In the first step of the analysis we assumed additive law of
mixing, and calculated the predicted response pattern of each
of the 27 binary mixtures. In the second step we assumed
the linear law of mixing, and found the optimal mixing coef-
ficientsα1 andα2 by solving the least-squares problem (4).

We can get a feeling for the prediction quality by us-
ing PCA to visualize the prediction versus the measured re-
sponse in a two-dimensional space. An example is shown
in Fig. 2, which plots both the predictions of the additive
law of mixtures (Fig. 2a) and the linear law of mixtures
(Fig. 2b). Both figures shows good prediction, but a closer
look reveals that those produced by the linear law of mixing

are slightly better (closer to the measured points). Notice
that in the figure the first two principal components cap-
ture nearly 100% of the variability in the data, indicating
that the two pure chemicals and their binary mixtures span
almost perfectly a two-dimensional subspace of the feature
space.

4.6. Analysis of mixtures with more than two compounds

We have worked along similar lines as for the previous
subsection, and the results are summarized inTable 6.

5. Discussion

Comparison of the three response curve models shows,
as expected, that the spline model is always to be preferred;
seeTable 4.
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Table 6
Summary of the results for mixtures with more than two compounds (med. is median and avg. is average)

Mixture Mixture law α Length deviation Angle (◦) Distance ratio

Med. Avg. Med. Avg. Med. Avg.

P:D:MA Additive 0.22 0.2 3.8 3.7 0.23 0.21
Linear (1.08,−0.63, 1.80)T 0.059 0.08 3.2 3.1 0.078 0.1

P:D:T Additive 0.041 0.062 1.9 1.8 0.054 0.074
Linear (0.72, 1.55, 0.96)T 0.035 0.059 1.9 1.8 0.052 0.074

B:A:T Additive 0.06 0.057 3 2.8 0.076 0.077
Linear (0.07, 1.13, 1.03)T 0.011 0.016 0.84 0.82 0.018 0.023

B:I:T Additive 0.12 0.11 2.7 2.6 0.13 0.12
Linear (0.14, 0.90, 1.08)T 0.0091 0.015 0.97 1 0.02 0.024

B:D:BB Additive 0.15 0.15 2.8 2.6 0.16 0.16
Linear (0.56, 0.91, 0.98)T 0.021 0.033 2.4 2.3 0.049 0.058

P:MA:BB Additive 0.45 0.47 3.1 3 0.46 0.47
Linear (0.33, 0.60, 0.83)T 0.013 0.011 2.3 2.3 0.041 0.041

D:MA:BB Additive 0.17 0.18 2.5 2.4 0.17 0.19
Linear (−0.26, 1.31, 1.01)T 0.023 0.029 2.4 2.4 0.046 0.052

MA:A:BB Additive 0.3 0.33 2.3 2.1 0.3 0.33
Linear (−0.16, 0.46, 1.21)T 0.053 0.051 2.8 2.7 0.071 0.072

D:A:I Additive 0.048 0.05 1.8 1.8 0.057 0.061
Linear (−0.11, 2.93,−0.36)T 0.022 0.024 2.2 2.3 0.046 0.048

A:I:T Additive 0.031 0.038 1.6 1.6 0.041 0.051
Linear (1.95, 0.15, 1.09)T 0.022 0.021 1.6 1.6 0.034 0.037

M:P:MP:A Additive 0.12 0.11 3.1 3 0.13 0.12
Linear (1.23, 0.30,−0.003, 1.8)T 0.053 0.062 2.5 2.4 0.068 0.078

P:D:MA:BB Additive 0.65 0.62 2.7 2.7 0.65 0.62
Linear (0.36, 0.77, 0.24, 0.80)T 0.072 0.083 2.6 2.5 0.084 0.097

P:MA:I:T Additive 0.16 0.15 1.3 1.4 0.16 0.15
Linear (0.67, 0.70, 0.8, 1.05)T 0.0072 0.0093 1.1 1.3 0.02 0.025

MA:A:BB:I Additive 0.32 0.34 2.4 2.2 0.32 0.34
Linear (−1.15, 2.51, 1.07,−0.63)T 0.037 0.037 2.9 2.7 0.062 0.061

P:D:A:T Additive 0.042 0.063 2.1 2.1 0.059 0.081
Linear (0.06, 2.37, 0.63, 1.17)T 0.03 0.056 1.6 1.6 0.043 0.068

M:MP:I:T Additive 0.15 0.15 2.9 2.9 0.15 0.16
Linear (0.35, 0.85,−0.15, 1.46)T 0.018 0.014 2.3 2.5 0.044 0.048

D:A:BB:I Additive 0.39 0.4 2.2 21 0.4 0.4
Linear (−0.05, 1.58, 0.72,−0.47)T 0.029 0.025 2 2 0.044 0.045

P:MA:A:I:T Additive 0.14 0.13 1.8 1.8 0.14 0.13
Linear (0.33, 2.18, 0.43, 1.27, 0.71)T 0.018 0.022 1.3 1.3 0.03 0.033

The slope curve model was used.

For binary mixtures measured with QMB sensors, the ad-
ditive law of mixing holds fairly well; seeTable 5. The cal-
culated mixing coefficients of the linear law,α1 andα2, are
very close to 1 (recall thatα1 = α2 = 1 indicates an addi-
tive law of mixing), with the maximal deviation from this
value being 23.11% (0.7689). The additive law of mixing
is a special case of the linear law of mixing and is there-
fore necessarily suboptimal and inferior in the overall pre-
diction accuracy. In most cases, however, the improvement
achieved by using the linear law for binary mixtures is not
that dramatic, as can be seen inFig. 2.

However, when examining mixtures with more than two
components, the additive law of mixing seems much less
promising; seeTable 6. At first sight, we see length devia-
tions and distance ratios as high as 65%, but closer inspection
reveals that these high values appear whenever butyl butyrate
(BB) and 4-methylanisole (MA) are part of the mixture. A
possible explanation may be that this non-additive behavior
arises due to mutual interaction between these two chemi-
cals. However, this explanation should be rejected when we
notice that relatively high length deviations and distance ra-
tios are observed also when the mixture contains either one
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of MA or BB; see, e.g., P:D:MA and D:A:BB:I. Hence, it
seems more likely that these two chemicals interact with
the sensors in a way that results in a non-additive behav-
ior whenever they are mixed with other chemicals, and also
with one another. If we restrict ourselves to mixtures that
do not contain either BB or MA, then the length deviations
and distance ratios are much smaller, with a maximum of
∼16%; see, e.g., M:MP:I:T.

Length deviations and distance ratios above 10% may be
acceptable for certain applications, but are nevertheless un-
desirable. A further look atTable 6reveals that using the
linear law of mixing gives excellent response predictions,
never above 10%, even when MA and BB are present to-
gether in the mixture. Notice, for example, that the quinary
mixture is predicted with a precision of∼3% in the distance
ratio, and∼2% in the length deviation. Actually, the table
shows that using the linear law of mixing reduces the pre-
diction errors approximately by an order of magnitude. For
example, the length deviations and distance ratios for the
mixture P:D:MA:BB when using the additive law of mix-
ing are about 65%, and they are less than 10% when using
the linear law of mixing. Another example is the mixture
B:I:T, whose length deviations were reduced from 12% to
less than 1% when using the linear law of mixing.

Looking at theαi values inTable 6reveals two interest-
ing observations. First, not even a single mixture has all its
compounds havingαi ≈ 1. This explains that vast improve-
ment in the prediction achieved by the linear law compared
to the additive one. Second, the highly non additive behavior
of the mixtures is further demonstrated byαi values which
are close to zero or even negative. For example, the trinary
mixture B:A:T behaves almost as if it was the binary mix-
ture A:T, with B influencing only slightly on the combined
response pattern (0.07� 1.13, 1.03). Another example is
the quaternary mixture MA:A:BB:I, which has two ingredi-
ents (A and BB) with positive contribution to the combined
response pattern, and two ingredients (MA and I) with a
negative contribution.

We may conclude that an MTM1 algorithm should model
eNose mixing with a linear law of mixing. The core com-
ponent of the whiffer in an odor communication system, is
a palette of odorants that the system can mix accurately in
order to mimic desired odor perceptions; see[4]. Therefore,
using the palette to perform the MTM1 algorithm necessi-
tates a preprocessing stage, during which the mixing coef-
ficients of the palette odorants will be studied by mixing
experiments.

Appendix A. Headspace mixing ratios versus solution
mixing ratios

We shall calculate the concentrations of the mixture com-
pounds in our autosampler sample loop. Let (V1, V2, . . . , Vn)
be the volumes of then compounds (including the solvent),
prepared at room temperatureT0 and at room pressureP0,

inside a vial of a total volumeVvial. Let the oven be heated
to a temperatureToven, and let the over pressure supplied by
the headspace sampler be�P. When the vial is sealed, the
ambient air takes a volume ofVair = Vvial −

∑
i Vi. By the

gas equation, the number of moles of air in the vial,N0
air is

simply

N0
air = P0Vair

RT0
.

When the vial is heated to a temperatureToven, the air pres-
sure in the vial increases to the value

Pair = N0
airRToven

Vair
= P0

Toven

T0
.

After the over pressure is applied, the number of moles of
air changes to

Nair = (Pair + �P)Vair

RToven
= N0

air + �PVair

RToven

= Vair

R

(
P0

T0
+ �P

Toven

)
. (A.1)

The number of moles in the liquid phase of each of the
mixture compounds is simply

N
liq
i = ρiVi

Wi

= aiVi,

whereρi is the density of theith compound,Vi is its volume
andWi is its molecular weight. Therefore, the molar fraction
of this compound in the liquid is

χi = N
liq
i∑

i N
liq
i

= aiVi∑
i aiVi

.

By Raoult law, the compound’s partial pressure in the oven
is

P
par
i = χiP

gas
i (Toven),

whereP
gas
i (T) is its equilibrium gas pressure in temperature

T. Therefore, the number of moles of this compound in the
gas phase is

N
gas
i = P

par
i Vair

RToven
. (A.2)

One of the compounds here, sayi0, must be the solvent, for
which we assumePpar

i0
= 0. The concentration of compound

i in the vial after over pressurizing is therefore

Ci = 106 × N
gas
i

Nair
(ppm). (A.3)

Substituting the results (A.2) and (A.1) in (A.3) we obtain

Ci = 106 × T0P
i
gas(Toven)

TovenP0 + T0�P
× χi. (A.4)

This equation tells us that the concentration of a compound
in the headspace during a measurement is proportional to its
molar fraction in the solution.
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