Chapter 16

A Maximum Likelihood Method for Reconstruction
of the Evolution of Eukaryotic Gene Structure

Liran Carmel, Igor B. Rogozin, Yuri I. Wolf, and Eugene V. Koonin

Abstract

Spliceosomal introns are one of the principal distinctive features of eukaryotes. Nevertheless, different
large-scale studies disagree about even the most basic features of their evolution. In order to come up with
a more reliable reconstruction of intron evolution, we developed a model that is far more comprehensive
than previous ones. This model is rich in parameters, and estimating them accurately is infeasible by
straightforward likelihood maximization. Thus, we have developed an expectation-maximization algo-
rithm that allows for efficient maximization. Here, we outline the model and describe the expectation-
maximization algorithm in detail. Since the method works with intron presence—absence maps, it is
expected to be instrumental for the analysis of the evolution of other binary characters as well.
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eukaryotic gene structure.

1. Introduction

In eukaryotes, many protein-coding genes have their coding
sequence broken into pieces — the exons — separated by the non-
coding spliceosomal introns. These introns are removed from the
nascent pre-mRNA and the exons are spliced together to form the
intronless mRNA by the spliceosome, a large and elaborate mac-
romolecular complex comprising several small RNA molecules
and numerous proteins. No spliceosomal introns have ever been
found in prokaryotes, and there are no eukaryotes with a comple-
tely sequenced genomes, not even the very basal ones, which
would not possess introns (1-3) and the accompanying splicing
machinery (4).
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Despite the introns being such a remarkable idiosyncrasy of
cukaryotic genomes, their origin and evolution are not thoroughly
understood (5, 6). It is generally accepted that introns can be
regarded as units of evolution and that their presence/absence
pattern is a result of stochastic processes of loss and gain. However,
the nature of these processes is vigorously debated. Recent large-
scale attempts to study these processes using extant eukaryotic
genomes led to incongruent conclusions.

In a study on reconstruction of intron evolution, Rogozin et al.
(7) analyzed ~700 sets of intron-bearing orthologous genes from
eight eukaryotic species. The multiple alignment of the orthologs
within each set was computed, and the intron positions were pro-
jected on the alignments to form presence/absence maps. Using
Dollo parsimony to infer ancestral states, these authors observed a
diverse repertoire of behaviors. Some lineages endured extensive
losses, while others experienced mostly gain events. Early for-
bearers, such as the last common ancestor of multicellular life,
were shown to be relatively intron-rich. This work suggested that
both gain and loss of introns played significant roles in shaping the
modern eukaryotic gene structure. However, as these inferences
rely upon the Dollo parsimony reconstruction, the number of
gains in terminal branches (leaves of the phylogenetic tree) is
overestimated, resulting in underestimation (potentially, signifi-
cant) of the number of introns in ancient lineages.

The same data set was analyzed by Roy and Gilbert (8, 9) using
a different methodology. They adopted a simple evolutionary
model, according to which different lineages are associated with
different loss and gain probabilities. Using a variation on maximum
likelihood estimation, they obtained considerably higher estimates
for the number ofintrons in early eukaryotes and a correspondingly
lower level of gains in all lineages, i.e., a clear dominance of loss
events in the evolution of eukaryotic genes. Roy and Gilbert have
substantially simplified the mathematics involved in the estimation
procedure, at the expense of introducing into the computation
considerations of parsimony, which yielded an inference technique
that is a hybrid between parsimony and maximum likelihood. This
hybrid, however, excludes from consideration different evolution-
ary scenarios, resulting in inflated estimates of the number of
introns in early eukaryotes (10).

The model of Roy and Gilbert is branch-specific, i.c., it assumes
that the gain and loss rates depend only on the branch, thus tacitly
presuming that all genes behave identically with respect to intron
gain and loss. Exactly the inverse approach was adopted by Qiu
etal. (11). These authors developed a gene-specific model, whereby
different gene families are characterized by different rates of intron
gain and loss, but for a particular gene these rates are constant
across the entire phylogenetic tree. They used a different data set
combined with a Bayesian estimation technique and concluded
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that almost all extant introns were gained during the eukaryotic
evolution. This suggests evolution is dominated by intron gain
events with few losses. However, the validity of a gene-specific
model is disputable as it is hard to reconcile with the accumulating
evidence on large differences between lineages (12-15).

Recently, two maximum likelihood estimation techniques
have been developed for essentially the same branch-specific evo-
lutionary model as the one of Roy and Gilbert. Csuros (10) used a
direct approach, while Nguyen et al. (16) developed an expecta-
tion-maximization algorithm. Both methods encountered the
same problem of estimating the number of unobserved intronless
sites. Each employed a technically different but conceptually simi-
lar method to evaluate this number. Both techniques were applied
to the eight-species data of Rogozin et al. (7), yielding very close
estimates. As expected, these methods predict intron occupancy
level of ancient lineages higher than those predicted by Dollo
parsimony and lower than those predicted by the hybrid technique
of Roy and Gilbert. Notably, these estimates are generally closer to
those obtained using Dollo parsimony, and they imply an evolu-
tionary landscape comprising both losses and gains, with some
excess of gains.

While the Dollo parsimony (7) and the hybrid technique of
Roy and Gilbert (8, 9) showed some methodological biases,
the other analyses of intron evolution (10, 11, 16) used well-
established estimation techniques. Nevertheless, these studies
kept yielding widely diverging inferences. The reason seems to be
the differences in the underlying evolutionary models, neither
being sufficient to describe the complex reality of intron evolution.
The branch-specific model fails to account for important differ-
ences between genes, whereas the gene-specific model ignores the
sharp differences between lineages. Additionally, rate variability
between sites, known to be an important factor in other fields of
molecular evolution (17, 18),should be taken into account also in
the evolution of gene structure. This is particularly important for
intron gain in light of the accumulating evidence in favor of the
proto-splice model, according to which new introns are preferen-
tially inserted inside certain sequence motifs (19-21). This means
that sites could dramatically differ in their gain rate depending on
their position relative to a proto-splice site.

Here we describe a model of evolution that takes into con-
sideration all of the above factors. In order to efficiently estimate
the model parameters by maximum likelihood, we have developed
an expectation-maximization algorithm. We also compiled a data
set that is considerably larger than previously used ones, consisting
01’400 sets of orthologous genes from 19 eukaryotic species. App-
lying our algorithm to this data set, we obtained high-precision
estimates, revealing a fascinating evolutionary history of gene
structure, where both losses and gains played significant roles
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albeit the contribution of losses was somewhat greater. Moreover,
we identified novel properties of intron evolution: (i) all eukaryotic
lineages share a common, universal, mode of intron evolution,
whereby the loss and gain processes are positively correlated.
This suggests that the mechanisms of intron gain and loss share
common mechanistic components. In some lineages, additional
forces come into play, resulting either in elevated loss rate or in
elevated gain rate. Lineages exhibiting an increased loss rate are
dispersed throughout the entire phylogenetic tree. In contrast,
lineages with excessive gains are much rarer, and all of them are
ancient. (ii) Intron loss rates of individual genes show no correla-
tion with any other genomic property. By contrast, intron gain rate
ofindividual genes show several remarkable relationships, not always
easily explained. In brief, intron gain rate is positively correlated with
expression level, negatively correlated with sequence evolution rate,
and negatively correlated with the gene length. Moreover, genes of
apparent bacterial origin have significantly lower rates of intron gain
than genes of archaeal origin. (iii) We showed that the remarkable
conservation of intron positions is, mainly (~90%), due to shared
ancestry, and only in a minority of the cases (~10%), due to parallel
gain at the same location. (iv) We determined that the density of
potential intron insertion sites is about 1 site per 7 nucleotides.

2. Materials

2.1. Multiple
Alignments

The algorithm learns the parameters of the model by comparing
the structure of orthologous genes in extant species. To carry out
this comparison, it requires two sets of input data, to be described
in this section. The first is a phylogenetic tree, defining topological
relationships between a set of eukaryotic species. The second is a
collection of genes, for which one can identify orthologs in at least
a subset of the species above.

Suppose that we have G sets of aligned orthologous genes from S
species. To represent the gene structure, we transtorm these align-
ments into intron presence—absence maps by substituting for each
nucleotide (or amino acid) 0 or 1, depending on whether an intron
is present or absent in the respective position. We allow for missing
data by using a third symbol (*), and consequently a gene might be
included in the input data even if it is missing in part of the species.
Every site in an alignment, called pattern, is a vector of length
§ over the alphabet (0,1,*). Let Q be the total number of unique
patterns in the entire set of G alignments, denoted wy, . . . , wgq, and
let n,, count the number of times pattern w, is found in the
multiple alignment of gene 4. Assuming that the sites evolve
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independently, the set M, = (n,1,...,n,,) fully characterizes the
multiple alignment of the gth gene. Thus, all the relevant informa-
tion about the multiple alignments is captured by the list of unique
patterns my, . . ., Wg, and the list of vectors M, ..., Mg.

Let T be a rooted bifurcating phylogenetic tree with S leaves
(terminal nodes) corresponding to the S species above. The total
number of nodes in T is N =28 — 1, and we index them by
t=0,1,..., N — 1, with the convention that zero is the root
node. The state of node ¢ is described by the random variable 4;,
which can take the values 0 and 1 (and * in leaves). We use V; for
the set of all leaves such that node # is among their ancestors. The
entire collection of leaves is, obviously, V4. The parent node of ¢ is
denoted P(%). We use the special notations g/ and V/ for qp ;) and
Vp(r), respectively. Analogously, the two direct descendents of
node ¢ are denoted L(7) and R(7), and we use the special notations
qk, 9%, VqL, and VqR for g11), qr(+)> Vi(r)> and Vgy(s), respectively.
We index the branches by the node into which they are leading,
and use A; to denote the length (in time units) of the #th branch.
We assume that the tree topology, as well as all the branch lengths
Ay, ..., ANx_1 are known.

3. Methods

3.1. The Probabilistic
Model

A graphical model is a mathematical graph whose nodes symbo-
lize random variables, and whose branches describe dependence
relationships between them (22). A bifurcating phylogenetic tree,
when viewed as a graphical model, depicts the probabilistic model

N-1
Pr(qo) ] Pr(ala)). 1]
t=1

We use the notation 7; = Pr(go = ¢) to describe the prior
probability of the root, and Aj;(g,¢) = Pr(q, = jlq = i,g9) to
describe the transition probability for gene g4 along branch z. In
our model, we assume that the transition probability depends on
both the gene and the branch, and that it takes the explicit form

— _ A _ oA
A(g,t) = I1-&(1—e y A) ¢(1—e . A) ' 2]
1_<1_¢)t)5 o (1_¢t)e o

Here, n, and 0, are nonnegative parameters, determining the
intron gain and loss rates, respectively, of gene 4. Complementa-
rily, &, and ¢, determine the intron gain and loss coefficients of
branch z, respectively, and are bound to the range 0 < &, ¢, < 1.
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The probability of an intron present in gene g at the beginning of
branch # to be retained along the branchis (1 — ¢,)e~ %% thatis, it
is retained only if the branch does not lose it (with probability
1 — ¢,), and also the gene does not lose it (with probability e=%4).
This comes to reflect a reality where strong forces to strip a gene oft
its introns will be practically unaffected by the particular lineage,
and, oppositely, strong forces to strip a lineage off its introns will
be practically unaffected by the particular gene. In the same spirit,
the probability of an intron to be gained in gene g4 along branch
tis &,(1 — ¢%), that is, it is gained only if both the branch
“approves” it (with probability £;) and the gene “approves” it
(with probability 1 — ¢7"s%),

In other fields of molecular evolution, it was long realized that
analysis precision improves if one allows for rate variability across
sites (17, 18). Typically, such rate variability is modeled by introdu-
cing a rate variable, r, which scales, for each site, the time units of
the phylogenetic tree, A; < 7 - A,. This rate variable is a random
variable, distributed according to a distribution function with non-
negative domain and unit mean, typically the unit-mean gamma
distribution. The rate variability reflects the idea that sites differ in
their rate of evolution. Specifically, there are fast-evolving sites
(r>>1), as well as slow-evolving ones (» < <1). In our model of
intron evolution we extend this idea by assuming that the gain
and loss processes are subject to rate variability, independently of
each other. Hence, a site can have any combination of gain and
loss rates. To accommodate this idea, we use two independent
rate variables, 7! and 77, that are used to scale, for each site, the
gene-specific gain rate, 1, < 77 -1,, and the gene-specific loss
rate, 0, «— 7. 0,. We further assume that the distributions of
these rate variables are independent of the genes, and are expli-
citly given by

' ~vo(n) + (1 —v)[(n; 4y)

9 3]
v~ F(Q, ig)

Here, I'(x; ) is the unit-mean gamma distribution of variable
x with shape parameter A, 6(x) is the Dirac delta-function, and v is
the fraction of sites that are assumed to have zero gain rate. These
latter sites, denoted invariant sites, reflect these sites that are not a
proto-splice site (19-21). Intron loss does not have an invariant
counterpart, as the assumption is that once an intron is gained, it
can always be lost. Therefore, the loss rate variable is assumed to be
distributed according to a gamma distribution, which is by far the

most popular in describing rate variability (17, 18, 23).
In practice, the rate distributions in Eq. [3] are rendered dis-
crete (24). We assume that the gain rate variable can take K, discrete
values 7] = 0,73, ..., g with probabilities i’ =v,£'..., f such
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K, :

that >, £/ = 1. Analogously, we assume that the loss rate variable
. 0 0 . age . 0 0

can take Ky discrete values 77, ..., 7 with probabilities f7', ..., fx,

such that Zf"l » = 1.Fora partlcular gain rate value 7, we denote
the actual gain rate 7} - ,; by 11, Similarly, for a particular loss rate

value 79, we denote the actual loss rate 7{ - 6, by 0y,.

For notational clarity, we aggregate the model parameters
into a small number of sets. To this end, let &, = {&;, ¢,} be
the set of parameters that are specific for branch #, and let
E=(8y,...,En_1) be the set of all branch-specific parameters.
Similarly, let ¥, = (17,,, 0,) be the set of parameters that are specific
for gene g, and let ¥ = (¥, ..., ¥¢) be the set of all gene-specific
parameters. Additionally, we denote by A = (v, 4,,/¢) the para-
meters that determine the rate variability. When the distinction
between the different sets of parameters is irrelevant, we shall use
O = (E,¥,A) as the set of all the model’s parameters. We achieve
further succinctness in notations by denoting the actual gene-
specific rate values for particular values 7] and 7}, of the rate
variables as Wi, = (1, Ory)-

For each site, the S leaves form a set of observed random variables,
their states being described by the corresponding pattern w,. The
state of all the internal nodes, denoted o, form a set of hidden
random variables, that is, random variables whose state is not
observed. In order to account for rate variability across sites, we
associate with each pattern two hidden random variables, pj and
pZ, that determine the value of the rate variables in that site. To
sum up, the observed random variables are w,, and the hidden
random variables are (o, pj, pf]).

We assume that sites within a gene, as well as the genes
themselves, evolve independently. Therefore, the total likelihood
can be decomposed as

G G Q
0) = L2, ¥, A) = [ [ [ L(w,|E. ¥, A) ™.
g=1 g=1p=1

L(M,,...,

and so

G ©Q
log L(M,...,Mg|®) = ZZ ngplog L(wy|2, W, A).  [4]
g=1 p=1

According to the well-known EM paradigm (25)
log L(M, ..., Mg|®) is guaranteed to increase as long as we max-
imize the auxiliary function

G Q
@ ®0 = ZZ”ﬂPQﬂ[I ‘—‘7 g7A7507qJ27A0)7 [5]
g=1 p=1
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3.2.1. The E-Step

3.2.1.1. The Inward (v)
Recursion

where
Q,ﬂﬁ( \ygvA :0 ngaAO) = Z PI' O- ppapp|wp7‘—‘0 lPO AO)
a,pg,pg [6]
IOgPI'(COP,O',pZ,ng,\Pﬂ,A).
Using some manipulations (see Note 1), this can be written as

K, K

Qﬂ,(_,qf AW, AO) ZZ [Pr(pp_k p) = H |y, 20, ¥ AO)}

k=1 k=

{ZPr(ow‘p,Eo,‘P‘gkk,) {logfy! +logfy +1ogPr(wy, o], ¥ ) } |.

Denoting by Wyphie .and Q o the first and second square
brackets, respectively, this expression becomes

K, Ky
Qe AT AN = 5" Qs (7
k=1 k=
and consequently
G o K K
0(0,0%) =) ") Z%wﬂpkk/Q o 8]

g=1 p=1 k=1 F

In this step we compute the function Q (®,0°%), or, equivalently,
the set of coefficients w . and Q gppr. We accomplish this with
the aid of an inward—outward recursion on the tree.

Here we propose a variation on the well-known Felsenstein’s pruning
algonthm (26 ). Let us associate with each node # (except for theroot)
avector y” (t) Pr(V;|qf = 4, :0,‘1‘ ). In words, y¢” ( ) is the
probability of observing the nodes V; (Wthh are a subset of the
pattern w,) for a gene g, when the gain and loss rate variables are 7/
and 79, respectively, and when the parent node of # is known to be in
state 2. By definition, this function is initialized at all leaves (z € V) by

1—¢&,(1 — ety _
(1—<1—¢> %’A’> "

&i(1 = e7)
—0,4A g =1.

(1 - ¢t)g e
Here, and in the derivations to follow, we omit the superscript

from y. For all internal nodes (except for the root), y is computed
using the recursion

(e W) = 9]

-

~
Il
=]

vie) = ) Ai(g,)7,(2), [10]

where J;(¢) is defined as y,[L(#)]y,;[R(#)] (se¢ Note 2).
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The y-recursion allows for computing the likelihood of
any observed pattern w,, given the values of the rate
variables:

PI’((UAEO,\ngk/) PI’( VOl'—‘ ) glzk’) Pr(VO ) V0R| gkk’) -

Pr(VOL7 V0R7 20 = i|507q]2kk’) =

Pr(qo = i|EOv\P2kk’) : PT(VOLMO =1, an\P:;W)'

M- 14

Il
o

PI‘( Vo}{‘ VOL, q() = i, EO, \Ilgkk/)
Given g9, V{ is independent of Vi, and so
Pe(Ve' | Vy's g0 = i, E%, W) = Pr(Vg'lgo = 4,E°, i),

and

Pr(w,|2°, ¥0,,) Z?w [11]

This y-recursion can be easily modlﬁed to incorporate missing

data (see Note 3).
3.2.1.2. The Outward () Once the y-recursion is computed, we can use it to compute a
Recursion second, complementary, recursion. To this end, let us associate

Witkflz each node ¢ (except for the root node) a matrix
/ . . ,_,0 0 . .

ocff (£) =Pr(q, = 4, qF = i|w,,E°, ¥ i) 1tis beneficial to define
for each node t (except for the root node) a vector

ek ik

ﬁ‘gp (¢) = Z O‘ﬂp (£) =Pr(g: = jley, E a‘ngk/) Upon  the
computat10n of o, ﬂ is readily computed too. Again, omitting the
superscripts, o can be initialized from its definition on the two
direct descendants of the root,

1

«(D(0)) = m
(ﬂmo( (0))Ao0 (g, D(0)) 0> D(0) € Vo, gP = 0
7171 (D(0)) A1o(s, D(0)) 0 - 12]
(0 710/0( ( ))AOI(ﬂaD(O))) D(O) 7 ql):l
0 m7,(D(0))An (g, D(0)) -

(novo( (0)70(D(0))Auo (5, D(0)) novo(f)(O))?l(D(O))Am(D(O))) DO)EVs
m171(D(0))70(D(0) A1o(D(0) 17 (D(0))71 (D(0)) Ay (D(0) '

Here, D(0) stands for any one of the direct descendants of the
root, and D(0) is its sibling. For any other internal node, o is
computed using the outward-recursion

o(s) = <ﬁo(P(f))"?o(t)Aoo(ﬂ, £)/70(2)  Bo(P(2))71(2)Aor (g, f)/Vo(t)) 13]
B1(P(2))7o(2)Aro(g, 1) /71 (2) - Br(P(£))71(2) A (g, 2) /71 (2)
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(see Note 4).
Finally, for each leaf that is not a descendant of the root,

Bo(P(r) 0\
<ﬁ1(P(t)) 0> 7 =0

0 BoP(e)Y
(o ﬁl<P<r>>> 7=1

Again, this recursion can be straightforwardly modified when
missing data are present (se¢ Note 5).

These inward—outward recursions are the phylogenetic
equivalent of the backward—forward recursions known from hid-
den Markov models, and other versions of it have already been
developed (27, 28). The version that we developed here can be
shown to be the realization of the junction tree algorithm (29) on
rooted bifurcating trees (sec Note 6).

a(t) = te Vo,P(¢) #0  [14]

3.2.1.3. Computing the Here we show that the y-recursion is sufficient to compute

Coefficients wypke the coefficients w,,y . From the definition, w, . = Pr(pz =k, pg
= k|w,, =° ‘PO , A?). Using the Bayes formula Pr(x, y|z) = Pr(x, v, 2)/
Doy Prix,y, z) We can rewrite it as

Pr (pju_ k p[; =K wp‘:()v‘{}gal\o)

X Pr(pl =k Pp 4 wp|:0 ‘PO /\0)

Wypkle =

Pr(p) = KE°, W9, A°) - Pr(p) = F[E°, W9, A°) - Pr(w,|E°, ¥Yy,)

B Zh,h’ Dr( PZ = h|:07‘1’§,»/\0) ( b= h’|H07‘P27A0) Pr(w,,|~ ) ghh’) .

But Pr(p), = k| =0, ‘PO ,A%) is just the current estimate of the

probablhty of the galn rate variable to have the Value 7}, namely
(f}z) Similarly, Pr(pp = /|=° ‘I’O ,A%) is just (fk,) Therefore, the
expression for the cocfﬁc1cnts ngkk’ is reduced to

(ﬂ")o(ﬂf)opf(wﬂzo gk;a) .
doni AN (D) Pr(e,|E° Ehh/)

[15]

Wypkle =

The function Pr(w,|Z°, ¥ kk,) is the 11kchh00d of observing
pattern w, for gain and loss rate variables 7] and 7}, respectively.
This is readily computed upon completion of the y-recursion, using

Eq. [11].
3.2.1.4. Computing the Here we show that these coefficients require the o, f-recursion. By
Coefficients Q gpik definition,

Qgpklz’—zpr olw,,E0 ¥ kk,) [logﬂ"—&—logf}e, +logPr(w,,0|Z, ¥ ).
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The probability Pr(w,, o|Z, ¥ ) is just the likelihood of a parti-
cular realization of the tree, thus from Eq. [1]

1
log Pr(w,, 0|2, ¥ ) Zé 90,1%) -logm;
=0

L on [16]
Z Z: qtv qt7 ) lOgAl](ﬂ t)

Here, d(a, b) is the Kronecker delta function, which is 1 for a = &
and 0 otherwise. Denote the expectation over Pr(c|w,, E, ‘ngk,)
by E,. Applying it to Eq. [16], we get

E;[logPr(wy, o|Z, ¥ )] Zlog 7; - Eg[0(40, 7))

+ Z Z log Ai(g, ) - Eo[8(a,)3(aF,9))-

i,j=0 t=1

But E,[5(qo, )] = Pr(g0 = i|w,, E° ,‘Pokk,) = ,(0), and simi-
larly E,[6(g:,7)0(47, )] = ai;(¢). Hence, Q,ﬂpkk’ is given by

Q ikt = Z Pr(c|w,, 2, ‘I’gkk,)[logﬁ” +logf + log Pr(wp, 0|2, ¥ )] =

1 N-1 [17]
=logf! +log £ + Z[f )logm; + Z Z ai;(¢)log Aij(g, t).
i,j=0 t=1

Substituting Eq. [17] in Eq. [8], we obtain an explicit form of the
function whose maximization guarantees stepping up-hill in the
likelihood landscape,

¢ o K K
Q=333 nymye(logf; +logfy)+
J=1 =1 =1 =1
)logno—l—ﬁﬂp 0)logm; ]+

+ZZ Z”ﬂprpkk’Oﬂgo (¢)log[1 —&,(1 — e )|+
=1
[18]

Q
+ZZZZanpwﬂpkw& (2)[logé,+log(1— rygkA,)}+
k=1 r=1
Q
—i—zzzzzngpwﬂpkwﬁ (t)log[l—(1—¢,)e” ﬂk,A,]_i_
t=1

G Q
NS SN w et (9)llog(1 - ¢,) — Al
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Actually, any increase in Q is sufficient to guarantee an
increase in the likelihood, suggesting that a precise maximiza-
tion of Q is not very important. Therefore, we speed compu-
tations by performing low-tolerance maximization with respect
to each of the parameters individually. Except for the para-
meters A and Ay, it is easy to differentiate Q twice with
respect to any parameter. This lends itself into using simple
zero-finding algorithms; we chose the Newton-Raphson algo-
rithm (30). Maximizing Q with respect to the shape para-
meters A and 4y is more involved, as Q depends on these
parameters only through the discrete approximation of the
rate variability distributions, Eq. [3] (see Note 7).

4. Notes

Al

i

1. Ifwe replace the formal summing over all states of p}, and p} in
Eq. [6] by a direct sum, we get

K, Ky

Qu(E ¥y, AE WA = > > Pr(o, py = ki

k=1 k=1 ¢ [19]
= F|wy, Z°, W9, A%)

log Pr(wy, 0, pj) = k,pg =FK|E,¥,,A).
Using our notational conventions, we can write the first
term in Eq. [19] as
[ 0 =0 g0 A0
PI‘(O’,p;} = kvpp = k/|wp,:4 7lPﬂ7A )
= 0
= Pr(p} =k, py = K|wy, E°,¥), A%)  [20]
. Pr(0-|wp, EO, ngkk’)’
and the second term as
log Pr(wy, o, p) = k, pf, =FK|E,¥,,A)
= log Pr(p}, = k|2, ¥,, A)+
+log Pr(p) = ¥|Z,¥,, A) [21]
+ log Pr(w,, 0|2, ¥ )
=logf}! +logfy +logPr(wp, o|Z, ¥ ).
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Substituting Eqs. [20] and [21] backin Eq. [19] gives the
desired result.

2. We expand

1i(2) = Pr(Vilg] = i) = Pr(V!, V] g) =)

- ipr(vf’ VE g =jlaf =9) =

]TO 22]
= 5" Pr(gs = jlg” = i) Pr(VEg = fogf = i)

=0
Pr(VVE g =507 =)

The first term is simply the definition of A;;(g, ). Given g;,
VI is independent on g7, thus the second term is just
Pr(VE|g, = j) = 7,(¢#"). By similar arguments the third term
is just Pr(VR|q, = j) = y]-(tR). By substituting those results
in Eq. [22], we recover the recursion formula, Eq. [10].

3. One of the appealing features of this recursion is that it allows
to treat missing data fairly easily. Only a single option has to
be added to the initialization phase Eq. [9],

(e W)= <1) qr = *.

4. To prove this recursion, let us start with the definition of «,
oij(t) = Pr(g: = j, 4] = ilwy) = Pr(q, =, 47 = i| Vo)
=Pr(q] = i|Vo) - Pr(g, = jla; = i, Vo) 23]
= Bi(D(2)) - Pr(q; = jlg} = i, Vo).

Let us make the decomposition Vo = V, + V;, with V;
being the set of all leaves such that node ¢ is not among
their ancestors. But, given 47, the state of node # is indepen-
dent on V;, and therefore Eq. [23] becomes

oii(£) = Bi(P(2)) - Pr(qe = jlg = i, Va). 24]

From Bayes formula,

Pr(g, =7, Vilql =)
Pr(V;|qf =)

Pr(q, =g =i, Vi) =

Pr(g: = jla; =) Pr(Vilge =7:4" =) 155
7i(2)

_Aij(ﬁvt) _ s P
- V;(t) 'PI'(IGM';—],Q} _l)'
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But given 4;, V; is independent of P(#) and therefore
Pr(Vilge =j.q; = i) = Pr(Vilg. = j) = J;(¢)-  [26]
Combining Eqs. [25] and [26] in Eq. [24], we get

7,(£)B:(P(2))
ai(t) = ]VTAH'(J%P%

which is just another form of writing Eq. [13].

. When missing data are present, two simple modifications are

required. First, we have to add to the initialization phase Eq.
[12] an option
1
Pr(wP|E°, ‘l’;kk,)
{nov(>[D(0)}Aoow7D(0)] m079D(0)] 401 [D(0)]
m171[D(0)]410[D(0)]  m171(D(0)]A411[D(0)]

2(D(0)) =

} D(0) € Vo, g8 = *

Second, we have to add to the finalization phase Eq. [14]
an option

(5) = {ﬁow(nmm@,ﬂ MP(t)]Am@,t)} —
BL[P()|A10(g.8)  Br[P(2)]An(g.2) '

. The junction tree algorithm is a scheme to compute marginal

probabilities of maximal cliques on graphs by means of belief
propagation on a modified junction tree. Indeed, the matrix
o computes marginal probabilities of pairs (£, P(¢)), but such
pairs are nothing but maximal cliques on rooted bifurcating
trees.

. In our implementation, we used Yang’s quantile method (24) to

compute the discrete levels of the gamma distributions such
that cach level has equal probability. Formally, A" =y,
fl=Q-v)/(K,—1) for k=2,...,K,, and f! = 1/K, for
k=1,...,Ky. To perform the maximization in this case, we
used Brent’s maximization algorithm that does not require
derivatives (30).
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