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A Maximum Likelihood Method for Reconstruction
of the Evolution of Eukaryotic Gene Structure
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Abstract

Spliceosomal introns are one of the principal distinctive features of eukaryotes. Nevertheless, different
large-scale studies disagree about even the most basic features of their evolution. In order to come up with
a more reliable reconstruction of intron evolution, we developed a model that is far more comprehensive
than previous ones. This model is rich in parameters, and estimating them accurately is infeasible by
straightforward likelihood maximization. Thus, we have developed an expectation-maximization algo-
rithm that allows for efficient maximization. Here, we outline the model and describe the expectation-
maximization algorithm in detail. Since the method works with intron presence–absence maps, it is
expected to be instrumental for the analysis of the evolution of other binary characters as well.
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1. Introduction

In eukaryotes, many protein-coding genes have their coding
sequence broken into pieces – the exons – separated by the non-
coding spliceosomal introns. These introns are removed from the
nascent pre-mRNA and the exons are spliced together to form the
intronless mRNA by the spliceosome, a large and elaborate mac-
romolecular complex comprising several small RNA molecules
and numerous proteins. No spliceosomal introns have ever been
found in prokaryotes, and there are no eukaryotes with a comple-
tely sequenced genomes, not even the very basal ones, which
would not possess introns (1–3) and the accompanying splicing
machinery (4).
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Despite the introns being such a remarkable idiosyncrasy of
eukaryotic genomes, their origin and evolution are not thoroughly
understood (5, 6). It is generally accepted that introns can be
regarded as units of evolution and that their presence/absence
pattern is a result of stochastic processes of loss and gain. However,
the nature of these processes is vigorously debated. Recent large-
scale attempts to study these processes using extant eukaryotic
genomes led to incongruent conclusions.

In a study on reconstruction of intron evolution, Rogozin et al.
(7) analyzed �700 sets of intron-bearing orthologous genes from
eight eukaryotic species. The multiple alignment of the orthologs
within each set was computed, and the intron positions were pro-
jected on the alignments to form presence/absence maps. Using
Dollo parsimony to infer ancestral states, these authors observed a
diverse repertoire of behaviors. Some lineages endured extensive
losses, while others experienced mostly gain events. Early for-
bearers, such as the last common ancestor of multicellular life,
were shown to be relatively intron-rich. This work suggested that
both gain and loss of introns played significant roles in shaping the
modern eukaryotic gene structure. However, as these inferences
rely upon the Dollo parsimony reconstruction, the number of
gains in terminal branches (leaves of the phylogenetic tree) is
overestimated, resulting in underestimation (potentially, signifi-
cant) of the number of introns in ancient lineages.

The same data set was analyzed by Roy and Gilbert (8, 9) using
a different methodology. They adopted a simple evolutionary
model, according to which different lineages are associated with
different loss and gain probabilities. Using a variation on maximum
likelihood estimation, they obtained considerably higher estimates
for the number of introns in early eukaryotes and a correspondingly
lower level of gains in all lineages, i.e., a clear dominance of loss
events in the evolution of eukaryotic genes. Roy and Gilbert have
substantially simplified the mathematics involved in the estimation
procedure, at the expense of introducing into the computation
considerations of parsimony, which yielded an inference technique
that is a hybrid between parsimony and maximum likelihood. This
hybrid, however, excludes from consideration different evolution-
ary scenarios, resulting in inflated estimates of the number of
introns in early eukaryotes (10).

The model of Roy and Gilbert is branch-specific, i.e., it assumes
that the gain and loss rates depend only on the branch, thus tacitly
presuming that all genes behave identically with respect to intron
gain and loss. Exactly the inverse approach was adopted by Qiu
et al. (11). These authors developed a gene-specific model, whereby
different gene families are characterized by different rates of intron
gain and loss, but for a particular gene these rates are constant
across the entire phylogenetic tree. They used a different data set
combined with a Bayesian estimation technique and concluded
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that almost all extant introns were gained during the eukaryotic
evolution. This suggests evolution is dominated by intron gain
events with few losses. However, the validity of a gene-specific
model is disputable as it is hard to reconcile with the accumulating
evidence on large differences between lineages (12–15).

Recently, two maximum likelihood estimation techniques
have been developed for essentially the same branch-specific evo-
lutionary model as the one of Roy and Gilbert. Csuros (10) used a
direct approach, while Nguyen et al. (16) developed an expecta-
tion-maximization algorithm. Both methods encountered the
same problem of estimating the number of unobserved intronless
sites. Each employed a technically different but conceptually simi-
lar method to evaluate this number. Both techniques were applied
to the eight-species data of Rogozin et al. (7), yielding very close
estimates. As expected, these methods predict intron occupancy
level of ancient lineages higher than those predicted by Dollo
parsimony and lower than those predicted by the hybrid technique
of Roy and Gilbert. Notably, these estimates are generally closer to
those obtained using Dollo parsimony, and they imply an evolu-
tionary landscape comprising both losses and gains, with some
excess of gains.

While the Dollo parsimony (7) and the hybrid technique of
Roy and Gilbert (8, 9) showed some methodological biases,
the other analyses of intron evolution (10, 11, 16) used well-
established estimation techniques. Nevertheless, these studies
kept yielding widely diverging inferences. The reason seems to be
the differences in the underlying evolutionary models, neither
being sufficient to describe the complex reality of intron evolution.
The branch-specific model fails to account for important differ-
ences between genes, whereas the gene-specific model ignores the
sharp differences between lineages. Additionally, rate variability
between sites, known to be an important factor in other fields of
molecular evolution (17, 18), should be taken into account also in
the evolution of gene structure. This is particularly important for
intron gain in light of the accumulating evidence in favor of the
proto-splice model, according to which new introns are preferen-
tially inserted inside certain sequence motifs (19–21). This means
that sites could dramatically differ in their gain rate depending on
their position relative to a proto-splice site.

Here we describe a model of evolution that takes into con-
sideration all of the above factors. In order to efficiently estimate
the model parameters by maximum likelihood, we have developed
an expectation-maximization algorithm. We also compiled a data
set that is considerably larger than previously used ones, consisting
of 400 sets of orthologous genes from 19 eukaryotic species. App-
lying our algorithm to this data set, we obtained high-precision
estimates, revealing a fascinating evolutionary history of gene
structure, where both losses and gains played significant roles
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albeit the contribution of losses was somewhat greater. Moreover,
we identified novel properties of intron evolution: (i) all eukaryotic
lineages share a common, universal, mode of intron evolution,
whereby the loss and gain processes are positively correlated.
This suggests that the mechanisms of intron gain and loss share
common mechanistic components. In some lineages, additional
forces come into play, resulting either in elevated loss rate or in
elevated gain rate. Lineages exhibiting an increased loss rate are
dispersed throughout the entire phylogenetic tree. In contrast,
lineages with excessive gains are much rarer, and all of them are
ancient. (ii) Intron loss rates of individual genes show no correla-
tion with any other genomic property. By contrast, intron gain rate
of individual genes show several remarkable relationships, not always
easily explained. In brief, intron gain rate is positively correlated with
expression level, negatively correlated with sequence evolution rate,
and negatively correlated with the gene length. Moreover, genes of
apparent bacterial origin have significantly lower rates of intron gain
than genes of archaeal origin. (iii) We showed that the remarkable
conservation of intron positions is, mainly (�90%), due to shared
ancestry, and only in a minority of the cases (�10%), due to parallel
gain at the same location. (iv) We determined that the density of
potential intron insertion sites is about 1 site per 7 nucleotides.

2. Materials

The algorithm learns the parameters of the model by comparing
the structure of orthologous genes in extant species. To carry out
this comparison, it requires two sets of input data, to be described
in this section. The first is a phylogenetic tree, defining topological
relationships between a set of eukaryotic species. The second is a
collection of genes, for which one can identify orthologs in at least
a subset of the species above.

2.1. Multiple

Alignments

Suppose that we have G sets of aligned orthologous genes from S
species. To represent the gene structure, we transform these align-
ments into intron presence–absence maps by substituting for each
nucleotide (or amino acid) 0 or 1, depending on whether an intron
is present or absent in the respective position. We allow for missing
data by using a third symbol (*), and consequently a gene might be
included in the input data even if it is missing in part of the species.
Every site in an alignment, called pattern, is a vector of length
S over the alphabet (0,1,*). Let O be the total number of unique
patterns in the entire set of G alignments, denotedo1; . . . ;oO, and
let ngp count the number of times pattern op is found in the
multiple alignment of gene g . Assuming that the sites evolve
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independently, the set Mg ¼ ðng1; . . . ;ngOÞ fully characterizes the
multiple alignment of the gth gene. Thus, all the relevant informa-
tion about the multiple alignments is captured by the list of unique
patterns o1; . . . ;oO, and the list of vectors M1; . . . ;MG .

2.2. Phylogenetic Tree Let T be a rooted bifurcating phylogenetic tree with S leaves
(terminal nodes) corresponding to the S species above. The total
number of nodes in T is N ¼ 2S � 1, and we index them by
t ¼ 0; 1; . . . ;N � 1, with the convention that zero is the root
node. The state of node t is described by the random variable qt ,
which can take the values 0 and 1 (and * in leaves). We use Vt for
the set of all leaves such that node t is among their ancestors. The
entire collection of leaves is, obviously, V0. The parent node of t is
denoted PðtÞ. We use the special notations qP

t and V P
t for qpðtÞ and

VPðtÞ, respectively. Analogously, the two direct descendents of
node t are denoted LðiÞ and RðiÞ, and we use the special notations
qL

t , qR
t , V L

q , and V R
q for qLðtÞ, qRðtÞ, VLðtÞ, and VRðtÞ, respectively.

We index the branches by the node into which they are leading,
and use Dt to denote the length (in time units) of the tth branch.
We assume that the tree topology, as well as all the branch lengths
D1; . . . ;DN�1 are known.

3. Methods

3.1. The Probabilistic

Model
A graphical model is a mathematical graph whose nodes symbo-
lize random variables, and whose branches describe dependence
relationships between them (22). A bifurcating phylogenetic tree,
when viewed as a graphical model, depicts the probabilistic model

Prðq0Þ
YN�1

t¼1

Prðqt jqP
t Þ: ½1�

We use the notation pi ¼ Prðq0 ¼ iÞ to describe the prior
probability of the root, and Aij ðg ; tÞ ¼ Prðqt ¼ j jqP

t ¼ i; gÞ to
describe the transition probability for gene g along branch t . In
our model, we assume that the transition probability depends on
both the gene and the branch, and that it takes the explicit form

Að g; tÞ ¼ 1� xtð1� e�ZgDt Þ xtð1� e�ZgDt Þ
1� ð1� ft Þe�ygDt ð1� ftÞe�ygDt

 !
: ½2�

Here, Zg and yg are nonnegative parameters, determining the
intron gain and loss rates, respectively, of gene g . Complementa-
rily, xt and ft determine the intron gain and loss coefficients of
branch t , respectively, and are bound to the range 0 � xt ;ft � 1.
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The probability of an intron present in gene g at the beginning of
branch t to be retained along the branch is ð1� ftÞe�ygDt , that is, it
is retained only if the branch does not lose it (with probability
1� ft), and also the gene does not lose it (with probability e�ygDt ).
This comes to reflect a reality where strong forces to strip a gene off
its introns will be practically unaffected by the particular lineage,
and, oppositely, strong forces to strip a lineage off its introns will
be practically unaffected by the particular gene. In the same spirit,
the probability of an intron to be gained in gene g along branch
t is xt ð1� e�ZgDt Þ, that is, it is gained only if both the branch
‘‘approves’’ it (with probability xt) and the gene ‘‘approves’’ it
(with probability 1� e�ZgDt ).

In other fields of molecular evolution, it was long realized that
analysis precision improves if one allows for rate variability across
sites (17, 18). Typically, such rate variability is modeled by introdu-
cing a rate variable, r, which scales, for each site, the time units of
the phylogenetic tree, Dt  r � Dt . This rate variable is a random
variable, distributed according to a distribution function with non-
negative domain and unit mean, typically the unit-mean gamma
distribution. The rate variability reflects the idea that sites differ in
their rate of evolution. Specifically, there are fast-evolving sites
(r441), as well as slow-evolving ones (r551). In our model of
intron evolution we extend this idea by assuming that the gain
and loss processes are subject to rate variability, independently of
each other. Hence, a site can have any combination of gain and
loss rates. To accommodate this idea, we use two independent
rate variables, rZ and ry, that are used to scale, for each site, the
gene-specific gain rate, Zg  rZ � Zg , and the gene-specific loss
rate, yg  ry � yg . We further assume that the distributions of
these rate variables are independent of the genes, and are expli-
citly given by

rZ � ndðZÞ þ ð1� nÞGðZ; lZÞ

ry � Gðy; lyÞ:
½3�

Here, Gðx; lÞ is the unit-mean gamma distribution of variable
x with shape parameter l, dðxÞ is the Dirac delta-function, and n is
the fraction of sites that are assumed to have zero gain rate. These
latter sites, denoted invariant sites, reflect these sites that are not a
proto-splice site (19–21). Intron loss does not have an invariant
counterpart, as the assumption is that once an intron is gained, it
can always be lost. Therefore, the loss rate variable is assumed to be
distributed according to a gamma distribution, which is by far the
most popular in describing rate variability (17, 18, 23).

In practice, the rate distributions in Eq. [3] are rendered dis-
crete (24). We assume that the gain rate variable can take KZ discrete

values rZ1 ¼ 0; rZ2; . . . ; rZKZ
with probabilities f Z

1 ¼ n; f Z
2 . . . ; f Z

KZ
such
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that
PKZ

k¼1 f Z
k ¼ 1. Analogously, we assume that the loss rate variable

can take Ky discrete values ry1; . . . ; ryKy
with probabilities f y

1 ; . . . ; f y
Ky

such that
PKy

k¼1 f y
k ¼ 1. For a particular gain rate value rZk , we denote

the actual gain rate rZk � Zg by Zkg . Similarly, for a particular loss rate

value ryk , we denote the actual loss rate ryk � yg by ykg .

For notational clarity, we aggregate the model parameters
into a small number of sets. To this end, let Xt ¼ fxt ;ftg be
the set of parameters that are specific for branch t , and let
X ¼ ðX1; . . . ;XN�1Þ be the set of all branch-specific parameters.
Similarly, let Cg ¼ ðZg ; ygÞ be the set of parameters that are specific

for gene g, and let C ¼ ðC1 . . . ;CGÞ be the set of all gene-specific
parameters. Additionally, we denote by L ¼ ðn; lZ; lyÞ the para-
meters that determine the rate variability. When the distinction
between the different sets of parameters is irrelevant, we shall use
Y ¼ ðX;C;LÞ as the set of all the model’s parameters. We achieve
further succinctness in notations by denoting the actual gene-

specific rate values for particular values rZk and ryk0 of the rate

variables as Ckk0g ¼ ðZkg ; yk0gÞ.

3.2. The EM Algorithm For each site, the S leaves form a set of observed random variables,
their states being described by the corresponding pattern op. The
state of all the internal nodes, denoted s, form a set of hidden
random variables, that is, random variables whose state is not
observed. In order to account for rate variability across sites, we
associate with each pattern two hidden random variables, rZp and
rZp, that determine the value of the rate variables in that site. To
sum up, the observed random variables are op, and the hidden
random variables are ðs; rZp; rypÞ.

We assume that sites within a gene, as well as the genes
themselves, evolve independently. Therefore, the total likelihood
can be decomposed as

LðM1; . . . ;MG jYÞ¼
YG

g¼1

LðMg jX;Cg ;LÞ¼
YG

g¼1

YO

p¼1

LðopjX;Cg ;LÞngp :

and so

log LðM1; . . . ;MG jYÞ ¼
XG

g¼1

XO

p¼1

ngp log LðopjX;Cg ;LÞ: ½4�

According to the well-known EM paradigm (25)
log LðM1; . . . ;MG jYÞ is guaranteed to increase as long as we max-
imize the auxiliary function

Q ðY;Y0Þ ¼
XG

g¼1

XO

p¼1

ngpQ gpðX;Cg ;L;X0;C0
g ;L

0Þ; ½5�
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where

Q gpðX;Cg ;L;X0;C0
g ;L

0Þ¼
X

s;rZp ;r
y
p

Prðs;rZp;rypjop;X0;C0
g ;L

0Þ

logPrðop;s;rZp;r
y
pjX;Cg ;LÞ:

½6�

Using some manipulations (see Note 1), this can be written as

Q gp X;Cg ;L;X0;C0
g ;L

0
� �

¼
XKZ

k¼1

XKy

k0¼1

Pr rZp¼k;ryp¼k0jop;X0;C0
g ;L

0
� �h i

�

�
X

s

Pr sjop;X0;C0
gkk0

� �
� logf Z

k þ logf y
k0 þ logPr op;sjX;Cgkk0

� �� �
" #

:

Denoting by wgpkk0 and Q gpkk0 the first and second square
brackets, respectively, this expression becomes

Q gpðX;Cg ;L;X0;C0
g ;L

0Þ ¼
XKZ

k¼1

XKy

k0¼1

wgpkk0Q gpkk0 ; ½7�

and consequently

Q ðY;Y0Þ ¼
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

ngpwgpkk0Q gpkk0 : ½8�

3.2.1. The E-Step In this step we compute the function Q ðY;Y0Þ, or, equivalently,
the set of coefficients wgpkk0 and Q gpkk0 . We accomplish this with
the aid of an inward–outward recursion on the tree.

3.2.1.1. The Inward (�)

Recursion

Here we propose a variation on the well-known Felsenstein’s pruning
algorithm (26). Let us associate with each node t (except for the root)
a vector g gpkk0

i ðtÞ ¼ PrðVt jqP
t ¼ i;X0;C0

gkk0 Þ. In words, g gpkk0

i ðtÞ is the
probability of observing the nodes Vt (which are a subset of the
pattern op) for a gene g , when the gain and loss rate variables are rZk
and ryk0 , respectively, and when the parent node of t is known to be in
state i. By definition, this function is initialized at all leaves (t 2 V0) by

gðt 2 V0Þ ¼

1� xtð1� e�ZgkDt Þ
1� ð1� ftÞe�ygk0Dt

 !
qt ¼ 0

xtð1� e�ZgkDt Þ
ð1� ft Þe�ygk0Dt

 !
qt ¼ 1:

8
>>>>><

>>>>>:

½9�

Here, and in the derivations to follow, we omit the superscript
from g. For all internal nodes (except for the root), g is computed
using the recursion

giðtÞ ¼
X1

j¼0

Aij ð g; tÞ~gj ðtÞ; ½10�

where ~gj ðtÞ is defined as gj ½LðtÞ�gj ½RðtÞ� (see Note 2).

364 Carmel et al.



The g-recursion allows for computing the likelihood of
any observed pattern op, given the values of the rate
variables:

PrðopjX0;C0
gkk0 Þ ¼ PrðV0jX0;C0

gkk0 Þ ¼ PrðV L
0 ;V

R
0 jX0;C0

gkk0 Þ ¼

¼
X1

i¼0

PrðV L
0 ;V

R
0 ; q0 ¼ ijX0;C0

gkk0 Þ ¼

¼
X1

i¼0

Prðq0 ¼ ijX0;C0
gkk0 Þ � PrðV L

0 jq0 ¼ i;X0;C0
gkk0 Þ�

PrðV R
0 jV L

0 ; q0 ¼ i;X0;C0
gkk0 Þ:

Given q0, V R
0 is independent of V L

0 , and so

PrðV R
0 jV L

0 ; q0 ¼ i;X0;C0
gkk0 Þ ¼ PrðV R

0 jq0 ¼ i;X0;C0
gkk0 Þ;

and

PrðopjX0;C0
gkk0 Þ ¼

X1

i¼0

pi~gið0Þ: ½11�

This g-recursion can be easily modified to incorporate missing
data (see Note 3).

3.2.1.2. The Outward (�)

Recursion

Once the g-recursion is computed, we can use it to compute a
second, complementary, recursion. To this end, let us associate
with each node t (except for the root node) a matrix
agpkk0

ij ðtÞ ¼ Prðqt ¼ j ; qP
t ¼ ijop;X0;C0

gkk0 Þ. It is beneficial to define
for each node t (except for the root node) a vector
bgpkk0

j ðtÞ ¼
P1

i¼0 a
gpkk0

ij ðtÞ ¼Prðqt ¼ j jop;X0;C0
gkk0 Þ. Upon the

computation of a, b is readily computed too. Again, omitting the
superscripts, a can be initialized from its definition on the two
direct descendants of the root,

aðDð0ÞÞ ¼ 1

PrðopjX0;C0
gkk0 Þ

p0g0ð �Dð0ÞÞA00ðg ;Dð0ÞÞ 0

p1g1ð �Dð0ÞÞA10ðg ;Dð0ÞÞ 0

 !
Dð0Þ 2 V0; q

D
0 ¼ 0

0 p0g0ð �Dð0ÞÞA01ðg ;Dð0ÞÞ

0 p1g1ð �Dð0ÞÞA11ðg ;Dð0ÞÞ

 !
Dð0Þ 2 V0; q

D
0 ¼ 1

p0g0ð �Dð0ÞÞ~g0ðDð0ÞÞA00ðg;Dð0ÞÞ p0g0ð �Dð0ÞÞ~g1ðDð0ÞÞA01ðDð0ÞÞ

p1g1ð �Dð0ÞÞ~g0ðDð0ÞÞA10ðDð0ÞÞ p1g1ð �Dð0ÞÞ~g1ðDð0ÞÞA11ðDð0ÞÞ

 !
Dð0Þ=2V0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

½12�

Here, Dð0Þ stands for any one of the direct descendants of the
root, and Dð0Þ is its sibling. For any other internal node, a is
computed using the outward-recursion

aðtÞ ¼
b0ðPðtÞÞ~g0ðtÞA00ðg ; tÞ=g0ðtÞ b0ðPðtÞÞ~g1ðtÞA01ðg ; tÞ=g0ðtÞ
b1ðPðtÞÞ~g0ðtÞA10ðg ; tÞ=g1ðtÞ b1ðPðtÞÞ~g1ðtÞA11ðg ; tÞ=g1ðtÞ

� 	
½13�
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(see Note 4).
Finally, for each leaf that is not a descendant of the root,

aðtÞ ¼

b0ðPðtÞÞ 0

b1ðPðtÞÞ 0

� 	
qt ¼ 0

0 b0ðPðtÞÞ
0 b1ðPðtÞÞ

� 	
qt ¼ 1:

8
>>><

>>>:
t 2 V0;PðtÞ 6¼ 0 ½14�

Again, this recursion can be straightforwardly modified when
missing data are present (see Note 5).

These inward–outward recursions are the phylogenetic
equivalent of the backward–forward recursions known from hid-
den Markov models, and other versions of it have already been
developed (27, 28). The version that we developed here can be
shown to be the realization of the junction tree algorithm (29) on
rooted bifurcating trees (see Note 6).

3.2.1.3. Computing the

Coefficients wgpkk 0

Here we show that the g-recursion is sufficient to compute

the coefficients wgpkk0 . From the definition, wgpkk0 ¼ PrðrZp ¼ k; ryp
¼ k0jop;X0;C0

g ;L
0Þ. Using the Bayes formula Prðx; yjzÞ ¼ Prðx; y; zÞ=P

x;y Prðx; y; zÞ, we can rewrite it as

wgpkk0 ¼
PrðrZp;¼ k;ryp ¼ k0;opjX0;C0

g ;L
0Þ

P
h;h0 PrðrZp ¼ h;ryp ¼ h0;opjX0;C0

g ;L
0Þ
¼

¼
PrðrZp ¼ kjX0;C0

g ;L
0Þ � Prðryp ¼ k0jX0;C0

g ;L
0Þ � PrðopjX0;C0

gkk0ÞP
h;h0 PrðrZp ¼ hjX0;C0

g ;L
0Þ � Prðryp ¼ h0jX0;C0

g ;L
0Þ � PrðopjX0;C0

ghh0 Þ
:

But PrðrZp ¼ kjX0;C0
g ;L

0Þ is just the current estimate of the
probability of the gain rate variable to have the value rZk , namely
ðf Z

k Þ
0. Similarly, Prðryp ¼ k0jX0;C0

g ;L
0Þ is just ðf y

k0 Þ
0. Therefore, the

expression for the coefficients wgpkk0 is reduced to

wgpkk0 ¼
ðf Z

k Þ
0ðf y

k0 Þ
0 PrðopjX0;C0

gkk0 ÞP
h;h0 ðf

Z
h Þ

0ðf y
h0 Þ

0 PrðopjX0;C0
ghh0 Þ

: ½15�

The function PrðopjX0;C0
gkk0 Þ is the likelihood of observing

pattern op for gain and loss rate variables rZk and ryk0 , respectively.
This is readily computed upon completion of the g-recursion, using
Eq. [11].

3.2.1.4. Computing the

Coefficients Q gpkk 0

Here we show that these coefficients require the a; b-recursion. By
definition,

Q gpkk0¼
X

s

Prðsjop;X0;C0
gkk0 Þ�½logf Z

k þlogf y
k0 þlogPrðop;sjX;Cgkk0 Þ�:
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The probability Prðop;sjX;Cgkk0 Þ is just the likelihood of a parti-
cular realization of the tree, thus from Eq. [1]

log Prðop; sjX;Cgkk0 Þ ¼
X1

i¼0

dðq0; iÞ � logpi

þ
X1

i;j¼0

XN�1

t¼1

dðqt ; jÞdðqP
t ; iÞ � log Aij ðg; tÞ:

½16�

Here, dða; bÞ is the Kronecker delta function, which is 1 for a ¼ b
and 0 otherwise. Denote the expectation over Prðsjop;X0;C0

gkk0 Þ
by Es. Applying it to Eq. [16], we get

Es½log Prðop; sjX;Cgkk0 Þ� ¼
X1

i¼0

log pi � Es½dðq0; iÞ�

þ
X1

i;j¼0

XN�1

t¼1

log Aij ðg; tÞ � Es½dðqt ; jÞdðqP
t ; iÞ�:

But Es½dðq0; iÞ� ¼ Prðq0 ¼ ijop;X0;C0
gkk0 Þ ¼ bið0Þ, and simi-

larly Es½dðqt ; jÞdðqP
t ; iÞ� ¼ aij ðtÞ. Hence, Q gpkk0 is given by

Q gpkk0 ¼
X

s

Prðsjop;X0;C0
gkk0 Þ½log f Z

k þ log f y
k0 þ log Prðop; sjX;Cgkk0 Þ� ¼

¼ log f Z
k þ log f y

k0 þ
X1

i¼0

bið0Þ log pi þ
X1

i;j¼0

XN�1

t¼1

aij ðtÞ log Aij ðg ; tÞ:
½17�

3.2.2. The M-Step Substituting Eq. [17] in Eq. [8], we obtain an explicit form of the
function whose maximization guarantees stepping up-hill in the
likelihood landscape,

Q ¼
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

ngpwgpkk0 ðlogf Z
k þlogf y

k0 Þþ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

ngpwgpkk0 ½bgpkk0

0 ð0Þlogp0þbgpkk0

1 ð0Þlogp1�þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

00 ðtÞlog½1�xt ð1�e�ZgkDt Þ�þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

01 ðtÞ½logxtþlogð1�e�ZgkDt Þ�þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

10 ðtÞlog½1�ð1�ftÞe�ygk0Dt �þ

þ
XG

g¼1

XO

p¼1

XKZ

k¼1

XKy

k0¼1

XN�1

t¼1

ngpwgpkk0a
gpkk0

11 ðtÞ½logð1�ftÞ�ygk0Dt �:

½18�

Maximum Likelihood Reconstruction of Intron–Exon Evolution 367



Actually, any increase in Q is sufficient to guarantee an
increase in the likelihood, suggesting that a precise maximiza-
tion of Q is not very important. Therefore, we speed compu-
tations by performing low-tolerance maximization with respect
to each of the parameters individually. Except for the para-
meters lZ and ly, it is easy to differentiate Q twice with
respect to any parameter. This lends itself into using simple
zero-finding algorithms; we chose the Newton-Raphson algo-
rithm (30). Maximizing Q with respect to the shape para-
meters lZ and ly is more involved, as Q depends on these
parameters only through the discrete approximation of the
rate variability distributions, Eq. [3] (see Note 7).

4. Notes

1. If we replace the formal summing over all states of rZp and rZp in
Eq. [6] by a direct sum, we get

Q gpðX;Cg ;L;X0;C0
g ;L

0Þ ¼
XKZ

k¼1

XKy

k0¼1

X

s

Prðs; rZp ¼ k; ryp

¼ k0jop;X0;C0
g ;L

0Þ

log Prðop;s;rZp ¼ k;ryp ¼ k0jX;Cg ;LÞ:

½19�

Using our notational conventions, we can write the first
term in Eq. [19] as

Prðs; rZp ¼ k;ryp ¼ k0jop;X0;C0
g ;L

0Þ

¼ PrðrZp ¼ k; ryp ¼ k0jop;X0;C0
g ;L

0Þ

� Prðsjop;X0;C0
gkk0 Þ;

½20�

and the second term as

log Prðop; s;rZp ¼ k; ryp ¼ k0jX;Cg ;LÞ

¼ log PrðrZp ¼ kjX;Cg ;LÞþ

þ log Prðryp ¼ k0jX;Cg ;LÞ

þ log Prðop;sjX;Cgkk0 Þ

¼ log f Z
k þ log f y

k0 þ log Prðop; sjX;Cgkk0 Þ:

½21�
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Substituting Eqs. [20] and [21] back in Eq. [19] gives the
desired result.

2. We expand

giðtÞ ¼ PrðVt jqP
t ¼ iÞ ¼ PrðV L

t ;V
R
t jqP

t ¼ iÞ

¼
X1

j¼0

PrðV L
t ;V

R
t ; qt ¼ j jqP

t ¼ iÞ ¼

¼
X1

j¼0

Prðqt ¼ j jqP
t ¼ iÞ � PrðV L

t jqt ¼ j ; qP
t ¼ iÞ

� PrðV R
t jV L

t ; qt ¼ j ; qP
t ¼ iÞ:

½22�

The first term is simply the definition of Aij ðg ; tÞ. Given qt ,
V L

t is independent on qP
t , thus the second term is just

PrðV L
t jqt ¼ jÞ ¼ gj ðtLÞ. By similar arguments the third term

is just PrðV R
t jqt ¼ jÞ ¼ gj ðtRÞ. By substituting those results

in Eq. [22], we recover the recursion formula, Eq. [10].

3. One of the appealing features of this recursion is that it allows
to treat missing data fairly easily. Only a single option has to
be added to the initialization phase Eq. [9],

gðt 2 V0Þ ¼
1

1

� 	
qt ¼ �:

4. To prove this recursion, let us start with the definition of a,

aij ðtÞ ¼ Prðqt ¼ j ; qP
t ¼ ijopÞ ¼ Prðqt ¼ j ; qP

t ¼ ijV0Þ

¼ PrðqP
t ¼ ijV0Þ � Prðqt ¼ j jqP

t ¼ i;V0Þ

¼ biðPðtÞÞ � Prðqt ¼ j jqP
t ¼ i;V0Þ:

½23�

Let us make the decomposition V0 ¼ Vt þ �Vt , with �Vt

being the set of all leaves such that node t is not among
their ancestors. But, given qP

t , the state of node t is indepen-
dent on �Vt , and therefore Eq. [23] becomes

aij ðtÞ ¼ biðPðtÞÞ � Prðqt ¼ j jqP
t ¼ i;VtÞ: ½24�

From Bayes formula,

Prðqt ¼ j jqP
t ¼ i;Vt Þ ¼

Prðqt ¼ j ;Vt jqP
t ¼ iÞ

PrðVt jqP
t ¼ iÞ

¼ Prðqt ¼ j jqP
t ¼ iÞ �PrðVt jqt ¼ j ;qP

t ¼ iÞ
giðtÞ

¼Aij ðg ; tÞ
giðtÞ

�PrðVt jqt ¼ j ;qP
t ¼ iÞ:

½25�
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But given qt , Vt is independent of PðtÞ and therefore

PrðVt jqt ¼ j ; qP
t ¼ iÞ ¼ PrðVt jqt ¼ jÞ ¼ ~gj ðtÞ: ½26�

Combining Eqs. [25] and [26] in Eq. [24], we get

aij ðtÞ ¼
~gj ðtÞbiðPðtÞÞ

giðtÞ
Aij ðg ; pÞ;

which is just another form of writing Eq. [13].
5. When missing data are present, two simple modifications are

required. First, we have to add to the initialization phase Eq.
[12] an option

aðDð0ÞÞ ¼ 1

PrðopjX0;C0
gkk0 Þ

p0g0½ �Dð0Þ�A00½g ;Dð0Þ� p0g0
�Dð0Þ�A01½Dð0Þ�

p1g1½ �Dð0Þ�A10½Dð0Þ� p1g1ð �Dð0Þ�A11½Dð0Þ�

( )
Dð0Þ 2 V0; q

D
0 ¼ �

Second, we have to add to the finalization phase Eq. [14]
an option

aðtÞ ¼
b0½PðtÞ�A00ðg ; tÞ b0½PðtÞ�A01ðg ; tÞ
b1½PðtÞ�A10ðg ; tÞ b1½PðtÞ�A11ðg ; tÞ


 �
qt ¼ �:

6. The junction tree algorithm is a scheme to compute marginal
probabilities of maximal cliques on graphs by means of belief
propagation on a modified junction tree. Indeed, the matrix
a computes marginal probabilities of pairs ðt ;PðtÞÞ, but such
pairs are nothing but maximal cliques on rooted bifurcating
trees.

7. In our implementation, we used Yang’s quantile method (24) to
compute the discrete levels of the gamma distributions such
that each level has equal probability. Formally, f Z

1 ¼ n,
f Z
k ¼ ð1� nÞ=ðKZ � 1Þ for k ¼ 2; . . . ;KZ, and f y

k ¼ 1=Ky for
k ¼ 1; . . . ;Ky. To perform the maximization in this case, we
used Brent’s maximization algorithm that does not require
derivatives (30).
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