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Abstract

We propose a new feature extraction method for use with chemical sensors. It is based on fitting a parametric analytic model of the sensor’s

response over time to the measured signal, and taking the set of best-fitting parameters as the features. The process of finding the features is

fast and robust, and the resulting set of features is shown to significantly enhance the performance of subsequent classification algorithms.

Moreover, the model that we have developed fits equally well to sensors of different technologies and embeddings, suggesting its applicability

to a diverse repertoire of sensors and analytic devices.
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1. Introduction

Electronic noses (or, in short, eNoses) are analytic devices

that play a constantly growing role as general purpose detec-

tors of vapor chemicals [1]. The main component of an eNose

is an array of non-specific sensors, i.e., sensors that interact

with a broad range of chemicals with varying strengths.

Correspondingly, an analyte stimulates many of the sensors

in the array and elicits a characteristic response pattern. The

sensors inside an eNose are made of diverse technologies.

Depending on the type of sensor, a certain physical property is

changed as a result of an exposure to gaseous analytes. During

the measurement process a signal is obtained by constantly

recording the value of this physical property.

The signals should then be analyzed for the benefit of the

specific application. The vast majority of the applications

involve a classification process—identifying an unknown

sample by comparing its pattern with those of known

analytes. For details on this kind of pattern recognition,

see, e.g., [2]. To list a few examples, eNoses are used for

quality assessment of food products [3–5], for medical

diagnostics [6,7], and for determining the amount of off-

odor in packaging materials [8].

Whatever classification algorithm is used, it requires the

measured signals as input. However, since a typical signal is

comprised of a few hundred measured values, a preceding

stage of feature extraction is frequently required. This is the

process of finding a small set of parameters that somehow

represent the entire signal. To date, a small group of feature

extraction methods is used by the vast majority of the

community, all capture only a portion of the information

contained in the signals. Even though these methods are

satisfactory for some applications, it is generally accepted

that performance can be enhanced by the use of more

optimal methods. Yet, no practical alternatives to the cur-

rently used methods have been proposed.

In this paper we present a new feature extraction method

that extracts much more information from the signals, yet

keeps the number of features small. The idea that underlies

the method is to model the time-dependency of the response

by an analytic expression, which is completely characterized

by a small set of parameters; these parameters are then taken

to be the features. For every measurement we find the

corresponding values of the features by carrying out a

curve-fitting procedure.

The analytic model, which we henceforth call the Lor-

entzian model, is derived from a very simple physical

description of the measurement process. It uses four para-

meters, all with a precise physical meaning, that are obtained

from a fast and robust curve-fitting process. We show that

using them as features in later classification tasks results in a
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significantly improved classification rate, suggesting their

utility as the input for data analysis algorithms.

The shape of a signal depends on the type of sensor, the

type of stimulus, the physical arrangement of the apparatus,

and the way by which the stimulus is introduced to the

sensor. Any of these can be dramatically varied between

experiments, resulting in a diverse repertoire of signals.

Surprisingly enough, our model shows excellent robustness

with respect to changing these parameters. Specifically, we

have successfully tested the model against two different

sensor modules differing by the type of sensors (quartz-

microbalance (QMB) sensors and metal-oxide (MOX) sen-

sors), by their physical arrangement, and by the shape and

volume of their housing chamber. Relying upon these

results, we speculate that our model has a broad range of

applicability, being valid for many as of yet unexamined

sensor technologies and chamber designs. Probably, it would

also be valid for other kinds of analytic devices that contain

chemical sensors.

Besides the Lorentzian model, we introduce two alter-

native models that are slightly inferior in general, but may be

found more beneficial in certain applications. The first,

which we call the exponential model, is derived by slightly

changing the physical assumptions that led to the Lorentzian

model. It also uses four physically interpretable and rapidly

computable parameters, but its fit to the measured signals is

slightly worse than that of the Lorentzian model. The

second, the double-sigmoid model, is purely empirical. It

has the best fit with the measured signals, but at the expense

of using nine parameters with only vague physical inter-

pretations, and whose computation is time-consuming and

not robust.

2. Experimental

We have been using a MOSESII eNose [9] with two

sensor modules: an eight-sensor QMB module, and an eight-

sensor MOX module. (Reviews on these technologies can be

found in, e.g., [1,10].) The samples were put in 20 ml vials in

HP7694 headspace sampler, which heated them to 40 �C and

injected the headspace content into the electronic nose.

There, the analyte was first introduced into the QMB

chamber, whence it followed to the 300 �C heated MOX

chamber. The injection lasts for 30 s, and is followed by a

15 min purging stage using synthetic air.

We have tested our models against a large dataset, com-

posed of 30 volatile odorous pure chemicals listed alpha-

betically in Table 1. These chemicals were intentionally

chosen from many different families, so that they would

represent a broad range of possible stimuli. Each chemical

was measured in batches, with a single batch containing at

least seven successive measurements. Different batches of

the same chemical were usually taken in totally different

dates. In total, we have performed 300 measurements, with

an average of 10 per chemical.

3. Standard feature extraction methods

The signals obtained from eNoses normally have one of

two basic shapes, distinguished only by the duration of the

stimulus presentation. When the stimulus is introduced long

enough for the sensor to reach a steady state (typically a

couple of minutes), a steady-state signal of the shape shown

in Fig. 1b is obtained. But, when the stimulus is introduced

only for a short duration (typically 20–30 s), a transient

signal is obtained, of the general form shown in Fig. 1a.

The common practice in the field is to represent each

signal using a single feature, having some simple, purely

geometric, definition. Here are some examples of the most

popular of these.

Let ciðtÞ be the measured signal of the ith sensor. If it is a

steady-state signal, the custom is to choose the feature as the

difference between the steady-state response and the base-

Table 1

The 30 pure chemicals in our dataset

List of chemicals

1S-(�)-a-pinene Ethyl-2-methylbutyrate

1S-(�)-b-pinene Ethyl-3-methylthiopropionate

1-Phenyl-1,2-propanedione Ethyl-n-valerate

2-Acetylpyridine Ethyl acetoacetate

2,3-Heptanedione Ethyl caproate

4-Methylanisole Ethylpyrazine

a-Angelica lactone Phenylacetaldehyde dimethyl acetal

Amyl butyrate Propylidene phthalide

Butyl butyrate R-(�)-limonene

Butyl butyryl lactate S-(�)-limonene

Butylidene phthalide Terpinotene

Cis-3-hexenyl acetate Trans-2-hexenal

Cis-6-nonenal Trans-2-hexenol

Citral Trans-2-methyl-2-pentenoic

Ethyl-2-methyl-4-pentenoate Trans-2-octenal

Fig. 1. Typical shapes of eNoses signals: (a) transient signal: the stimulus

is introduced for a relatively short time; (b) steady-state signal: the

stimulus is introduced for a relatively long time.
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line, cmax
i ; see Fig. 2. For transient signals, the repertoire of

features is richer; see Fig. 3. The most popular feature is,

again, the difference between the signal’s peak and its

baseline, cmax
i (Fig. 3a). Other options are to take the area

beneath the curve, Ai (Fig. 3b), the area beneath the curve

left of the peak, Amax
i (Fig. 3c), and the time it takes for the

signal to reach its peak, Tmax
i (Fig. 3d). In several cases, more

than one feature per signal is used, working with a subset of

the aforementioned features.

While these methods have the advantage of being simple

and fast to compute, their primary weakness is in their purely

geometrical nature. They do not take into consideration any

specific properties of the sensors, thus leaving some of the

potential information carried in the signals unutilized. These

features have been successfully used for many simple

applications, but it is generally agreed that more sophisti-

cated features will be required when turning to more

demanding tasks.

Using different feature extraction methods is rare. For

example, White et al. [11] built a special artificial neural

network that is fed the entire signal. Their method uses, of

course, the maximum possible information, but taking the

entire signal seems superfluous and computationally expen-

sive. Also, the neural network is highly complex and appears

to be hard to implement.

4. Feature extraction based upon response models

In this section we present our analytic models of a sensor’s

response, and the features associated with them. First, we

develop a simple model of the apparatus, from which we

obtain the Lorentzian and the exponential models. We then

introduce the double-sigmoid empirical model, and give

some heuristics regarding it. Quantitative analysis of the

performance of each model is postponed to Section 5. In the

experiments that we have been carrying out, we used only

short duration injection (30 s). Consequently, we have devel-

oped and tested our models only against transient signals;

see Fig. 1a. Nevertheless, we anticipate that our models will

also fit steady-state signals.

4.1. The Lorentzian and exponential models

We assume that the measurement system is composed of n

dimensionless sensors, arranged in succession in a chamber,

and that the flow of particles through the chamber is one-

dimensional, along the x-axis, as described in Fig. 4. Let xi

be the coordinate of the ith sensor, and let x ¼ 0 be the

chamber’s inlet. Let Npðx; tÞ be the number of particles of the

inspected chemical in location x at time t, and let f ðtÞ be the

number of particles at the inlet at time t. By definition

Npð0; tÞ ¼ f ðtÞ; (1)

f ðtÞ is still unspecified, but it must have the general property

of being non-negative everywhere. Moreover, if we use N0 to

denote the total number of particles introduced into the

chamber during the measurement, thenZ 1

�1
f ðtÞ dt ¼ N0: (2)

Fig. 2. Definition of cmax
i for a steady-state signal.

Fig. 3. Definition of the four most popular features in transient signals: (a)

the difference between the peak and the baseline, cmax
i ; (b) the area under

the curve, Ai; (c) the area under the curve left of the peak, Amax
i ; (d) the

time from the beginning of the signal to the peak, Tmax
i . Fig. 4. A schematic description of a one-dimensional sensor chamber.
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Next, let us assume that all the particles move in the chamber

along the x-direction at a constant velocity v. The profile of

the particles near the ith sensor is

Npðxi; tÞ ¼ Np 0; t � xi

v

� �
¼ Npð0; t � tiÞ ¼ f ðt � tiÞ; (3)

where ti ¼ xi=v is just the time it takes for a particle to make

its way between the inlet and sensor i. In deriving (3) we

implicitly assume that only a small fraction of the particles

interact with the sensors, so that the number of particles

that drop out of the stream is negligible. A sensor, then, is

not influenced by the fact that there are other sensors

preceding it.

Let NiðtÞ be the number of particles that are adsorbed at

the ith sensor at time t. We assume that NiðtÞ is a constant

percentage ki of the total number of particles in the vicinity

of the sensor, so that

NiðtÞ ¼ kiNpðxi; tÞ ¼ kif ðt � tiÞ: (4)

Let giðt2 � t1Þ be the probability that a particle that was

adsorbed into the ith sensor at time t1, is still present on it at

time t2. From physical considerations, giðtÞ must be mono-

tonically decreasing, and must obey

gið0Þ ¼ 1; lim
t!1

giðtÞ ¼ 0:

Let LiðtÞ be the total number of particles that are present

on the ith sensor at time t. In terms of gðtÞ and f ðtÞ, LiðtÞ
is

LiðtÞ ¼
Z 1

0

Niðt � uÞgiðuÞ du

¼ ki

Z 1

0

giðuÞf ðt � ti � uÞ du: (5)

Let RiðtÞ be the response of the ith sensor at time t. Assuming

that RiðtÞ ¼ aiLiðtÞ, with ai a sensor-specific constant, we get

RiðtÞ ¼ ai

Z 1

0

giðuÞf ðt � ti � uÞ du; (6)

where ai ¼ aiki. This is the most general form of the

response. However, we can bring it to a different form

if we use the fact that stimulus presentation is always

bounded in duration. Accordingly, we may take f ðtÞ to be

non-zero only in the range t 2 ½0; T
, arbitrarily setting t ¼ 0

at the time of the beginning of the stimulus presentation.

Using this fact, and introducing the new variable

v ¼ t � ti � u, we get

RiðtÞ ¼
0; t < ti;

ai

R t�ti
0

giðt � ti � vÞf ðvÞ dv; ti � t � ti þ T ;

ai

R T

0
giðt � ti � vÞf ðvÞ dv; t > ti þ T:

8><
>:

(7)

Even without specifying f ðtÞ and gðtÞ, we can point out some

interesting properties of (7):

(1) For t > ti þ T, the function RiðtÞ is monotonically

decreasing. To prove this, we simply have to differ-

entiate the appropriate expression in (7),

dRiðtÞ
dt

¼ ai

Z T

0

dgiðt � ti � vÞ
dt

f ðvÞ dv; t > ti þ T:

But giðtÞ is known to be monotonically decreasing,

while f ðtÞ in this range is positive. Thus, ðdgi=dtÞf is

negative, resulting in negative dRi=dt. For a measured

signal with a peak at ti þ Tmax
i , we are thus guaranteed

that T 
 Tmax
i .

(2) Let us look at large times t � ti þ T . If the function

gðtÞ is smooth enough at these times, which is

reasonable, we can approximate the third expression

in (7) by

RiðtÞ � aigiðtÞ
Z T

0

f ðvÞ dv ¼ aiN0giðtÞ;

t � ti þ T : (8)

Therefore, examination of the time-dependency of the

far end of the signal can give us some information

about the shape of gðtÞ.

4.1.1. Evaluating f ðtÞ
The function f ðtÞ captures the shape of the injected

stimulus over time. Since the injection time in our system

(30 s) is small relative to the total measurement time (600 s),

we speculate that the actual shape of f ðtÞ is mostly relevant

in the short period of the fast rise of the signal, and has a

much smaller impact on the dominant decreasing part.

Consequently, we do not expect the model to be very

sensitive to the choice of f ðtÞ. Since the injection is con-

trolled by the headspace autosampler, it is assumed to be

quite homogeneous in time, and it is thus easiest to assume

that the stimulus is injected at a constant rate:

f ðtÞ ¼
N0

T
; 0 � t � T;

0 otherwise:

8<
:

Substituting this in (7), we get

RiðtÞ ¼
0; t < ti;

bi

R t�ti
0

giðvÞ dv; ti � t � ti þ T ;

bi

R t�ti
t�ti�T

giðvÞ dv; t > ti þ T ;

8><
>: (9)

where bi ¼ N0ai=T . For this choice of f ðtÞ, we can prove

that the signal’s peak occurs exactly at time ti þ T . To see

this, let us differentiate the intermediate term of (9)

dRiðtÞ
dt

¼ bigiðt � tiÞ 
 0; ti � t � ti þ T ;

so that the derivative is always positive. Combining this

with our previous result that the derivative is always negative

for t > ti þ T, we conclude that the peak occurs exactly at

ti þ T .
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4.1.2. Evaluating gðtÞ
It is tempting to assume an exponential decay, with

giðtÞ ¼ e�t=ti :

For many physical systems—perhaps the most famous of

which is the concentration decay of a radioactive source—

this function is a natural choice. Substituting in (9), we

obtain a response function of the form

RiðtÞ¼
0; t < ti;

bitið1 � e�½ðt�tiÞ=ti
Þ; ti � t � ti þ T;

bitiðeT=ti � 1Þ e�½ðt�tiÞ=ti
; t > ti þ T :

8><
>: (10)

This response model is the one we call the exponential

model. An example of how well it fits a measured signal is

shown in Fig. 5a. Although faithfully following the general

shape of the signal, the model fails to describe the exact form

of the decreasing part. This problem appeared in all the

signals that we have been checking, and motivated us to

come up with a better model.

In looking for a better function gðtÞ, we scanned many

potential candidates against each and every signal in our

dataset. Careful analysis of the results isolated one function

that stood above all others in its ability to explain the signal

shape. This is the Lorentzian decay function:

giðtÞ ¼
t2

i

t2 þ t2
i

: (11)

Substituting it in (9), we obtain a response of the form

Fig. 5. A comparison between a typical signal (cis-3-hexenyl acetate measured with a QMB sensor) and the three analytic models: (a) comparison with the

exponential model: notice the deviation in the decreasing part region; (b) comparison with the Lorentzian model: a vast improvement in the global fit is

observed; (c) comparison with the double-sigmoid model: the fit is almost perfect, the differences between the measured signal and the model are

indistinguishable.

RiðtÞ ¼

0; t < ti;

biti tan �1 t � ti

ti

	 

; ti � t � ti þ T ;

biti tan �1 t � ti

ti

	 

� tan �1 t � ti � T

ti

	 
� �
; t > ti þ T :

8>>>>><
>>>>>:

(12)

L. Carmel et al. / Sensors and Actuators B 93 (2003) 67–76 71



This is the explicit form of our Lorentzian model. This time,

the decreasing part, as well as the peak region, are nicely

captured; see the example in Fig. 5b.

4.1.3. Implementation

Since neither of the models is everywhere differentiable,

we could not use gradient-based methods for the curve

fitting, and preferred the Matlab1 function fminsearch,

which uses the simplex search method [12].

The speed of convergence dramatically depends on the

initial guess of the parameters. Luckily, all parameters are

physically meaningful for both the exponential and the

Lorentzian models, so that we are able to supply an excellent

initial guess, as follows:

(1) ti is just the time when the signal starts to rise.

(2) T is just Tmax
i .

(3) ti characterizes the decay time of the signal, which we

have found not to fluctuate too much for different

stimuli. Examining the entire dataset, we found a

typical value of ti for each sensor, that is used for

initialization. The values are listed in Table 2.

(4) bi is related to the amplitude of the signal. From (10)

and (12) the value of the signal at the peak is

cmax
i ¼ biti tan �1ðT=tiÞ for the Lorentzian model,

and cmax
i ¼ bitið1 � expð�T=tiÞÞ for the exponential

model, so that our initial guess for bi is

bi ¼

cmax
i

ti tan �1ðT=tiÞ
for the Lorentzian model;

cmax
i

tið1 � expð�T=tiÞÞ
for the exponential model:

8>><
>>:

4.2. The double-sigmoid model

Developing an analytic expression based on a model of

the system is a possible approach. Another possibility is to

check measured signals against a large library of candidate

models. We have used a library of 417 candidates, of which

some are classical asymmetric peak functions (such as log-

normal, extreme value, and Gamma function), but the

majority are peak functions that we have constructed by

multiplying two opposing sigmoid functions (one monoto-

nically decreasing and the other monotonically increasing).

Testing each of the candidates against our dataset, one

function outperformed all the others in its ability to fit

the measured signals, both of QMB sensors and of MOX

sensors. This nine parameter function, which is the one that

we call the double-sigmoid model, looks like this:

RiðtÞ ¼
ai

p
1 � exp � t � bi

gi

þ Ei

	 
di

 !" #Zi

� p
2
� tan �1 t � mi

ni

	 
� �li

(13)

with ai, bi, gi, di, Ei, Zi, mi, ni, and li the free parameters. RiðtÞ
yields an impressive fit with the measured signals, being

practically indistinguishable in most of the cases. An exam-

ple of a fit is shown in Fig. 5c. The function in the left-hand

square brackets is the sigmoid describing the rising part of

the signal. It is an hybridization of two familiar cumulative

probability distribution functions: for Ei ¼ ð ln 2Þ1=di it is the

cumulative Weibull probability distribution function

1 � exp � t � bi

gi

þ ð ln 2Þ1=di

	 
di

 !
;

while for di ¼ 1, Ei ¼ � lnð1 �
ffiffiffi
2

p
=2Þ, and Zi ¼ 2, it is the

pulse cumulative probability distribution function

1 � exp � t � bi

gi

� ln 1 �
ffiffiffi
2

p

2

	 
	 
	 
2

:

See, e.g., in TableCurve 2D1, the list of built-in functions.

The function in the right-hand square brackets is propor-

tional to 1 � the cumulative Lorentzian probability distribu-

tion function

1

p
p
2
þ tan �1 t � mi

ni

	 
� �
:

Here again we have revealed a connection between the

decreasing part of the signal and the Lorentzian distribution,

thus strongly supporting the foundations of the Lorentzian

model.

4.2.1. Implementation

We used both Matlab1 optimization functions fminsearch

and lsqcurvefit. The value of the parameters strongly

depends on their initial guess; however, lacking a clear

physical interpretation, a good guess is difficult to achieve.

As a general rule, ai is a measure of the signal’s amplitude,

bi and gi are related to the center and width of the rising

sigmoid, respectively, and mi and ni are related to the center

and width of the decreasing sigmoid, respectively. Zi and li

are powers normally in the range 0.5–3. Yet, whatever

Table 2

Initialization values for the parameter ti for each of the sensors in both the Lorentzian and the exponential modelsa

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 S1 S2 S3 S4 S5 S6 S7 S8

Lorentzian 11 11 10 9 10 18 7 5 93 48 95 80 93 103 90 136

Exponential 13 13 14 12 13 23 9 7 115 60 116 99 111 127 109 159

a Here Q1–Q8 are the eight QMB sensors, and S1–S8 are the eight MOX sensors.
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initialization one takes, the convergence is slow, and some-

times ends up with a non-optimal set of parameters, due to

convergence to a local minimum.

5. Results

We first compare our three models with respect to good-

ness-of-fit, computation speed, and robustness, and see why

we consider the Lorentzian model to be the most successful

of them all. We then compare the Lorentzian and exponen-

tial models to standard feature extraction methods and see

their advantages.

5.1. Comparing the analytic models

To quantify how well a model fits the data, we used the

well known R2-test [13] to measure the goodness-of-fit. R2 is

bounded from above by 1, and the closer it gets to 1, the

better is the fit in the least squares sense. The advantage of

the R2-test is that it measures goodness-of-fit on a normal-

ized scale, thus enabling comparison between differently

scaled signals. We tested our three models against all

300 � 8 QMB signals, and 300 � 8 MOX signals, and

calculated the average and the median of R2. The results

are shown in Table 3, nicely demonstrating our claims that

the double-sigmoid model fits the data extremely well, that

the Lorentzian model is next in performance, and that the

exponential model is the poorest of the three but still yields

pretty satisfying fits.

Moreover, the three models significantly differ in com-

putation time and in robustness, with the Lorentzian and

exponential models quite alike, and much better than the

double-sigmoid model. For the former, using a Matlab1

non-optimized code, a typical 16-signal measurement is

processed within a few seconds,1 while for the latter the

computation lasts a few minutes. As for what we call

robustness, while the ‘correct’ set of parameters is always

achieved for the Lorentzian and exponential models, con-

vergence to an ‘improper’ set of parameters is sometimes

detected for the double-sigmoid model, implying the exis-

tence of substantial local minima in the curve-fitting mini-

mization problem.

Taking into consideration all the above factors, our inevi-

table conclusion is that the Lorentzian model is the one to be

preferred for general data analysis. Yet, we do not rule out

the possibility that the exponential model will turn out to

better fit sensor types not tested by us, or that the double-

sigmoid model will be favored for certain specific small

datasets.

5.2. Feature extraction for classification tasks

Data analysis never ends with extracting the features, and

the true evaluation of the features lies in how well they serve

in subsequent algorithms. Stimuli classification is by far the

most popular application of eNoses, and therefore we have

decided to test the degree of usefulness of the different

features to classification tasks.

Classification can be viewed as a well-studied application

of algorithms in the general area of pattern recognition [2].

Many of these algorithms normally require a preliminary

learning phase, in which they are trained in classifying

measurements of a specific dataset. The learning phase uses

a set of measurements—the training set—whose actual class

Table 3

Averages and medians of the R2-test for the curve fitting of our three analytic modelsa

Sensor Double-sigmoid Lorentzian Exponential

Average Median Average Median Average Median

Q1 0.99173 0.99975 0.97803 0.99568 0.97124 0.98931

Q2 0.99926 0.99986 0.99349 0.99601 0.98811 0.99115

Q3 0.99485 0.99968 0.98664 0.99535 0.9738 0.99182

Q4 0.99699 0.99971 0.97292 0.99486 0.965 0.98905

Q5 0.99958 0.99974 0.99421 0.99596 0.98924 0.9918

Q6 0.99795 0.99959 0.98699 0.99179 0.97239 0.97684

Q7 0.99944 0.99967 0.99314 0.99611 0.9883 0.99205

Q8 0.99846 0.99936 0.99204 0.99733 0.98568 0.99201

S1 0.99923 0.99989 0.98249 0.99222 0.97424 0.98447

S2 0.9991 0.99969 0.96444 0.97624 0.94582 0.95751

S3 0.99889 0.99983 0.97726 0.99105 0.96846 0.98188

S4 0.99949 0.99976 0.97695 0.98344 0.968 0.97332

S5 0.99956 0.99986 0.98684 0.99324 0.97805 0.98486

S6 0.99941 0.99985 0.9782 0.9883 0.97118 0.98072

S7 0.99929 0.99985 0.98379 0.99039 0.97303 0.97941

S8 0.99764 0.99988 0.97903 0.9952 0.97414 0.99178

a Q1–Q8 are the eight QMB sensors, and S1–S8 the eight MOX sensors. For all sensors, whether QMB or MOX, all three models give a good fit, with the

double-sigmoid model exhibiting excellent fit, the Lorentzian model following, and the exponential model being the poorest of the three.

1 Using C code instead of Matlab1 is expected to significantly

accelerate the computation time, making it completely negligible.
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associations are known in advance. When this phase is

finished, the algorithm is ready to be applied to measure-

ments whose class association is not known. It is customary

to evaluate the performance of a classification algorithm by

applying it on another set of measurements—the test set.

These are measurements for which we do know the class

associations, but we apply the algorithm to them as if we did

not. Thus we can compare the classification predicted by the

algorithm with the actual one. The tests that we have run

consist of the following elements:

� Classification schemes: Nine classification schemes,

based upon two kinds of algorithms. A k-nearest-neigh-

bors (k-NN) algorithm [2] with k ¼ 1; 3; 5; 7, and classi-

fication by the shortest Mahalanobis distance [2] in the

principal components space of dimensions 1–5.

� Training set versus test set: Two alternative ways to divide

our 30-chemical dataset into a training set and a test set.

(a) The excess dataset, generated by taking the first seven

measurements of each chemical to be in the training set,

and taking any additional measurement to be in the test set

(thus having 30% of the measurements in the test set). (b)

The random dataset, generated by choosing at random

40% of the measurements to be in the test set, leaving a

training set of 60% of the data.

� Features: When having more than a single feature per

signal one gains some degrees of freedom in choosing the

best subset of features. If, for example, a fit of a certain

signal to the Lorentzian model gives the four parameters

bLor, tLor, TLor, and tLor, then we could choose as our

feature set any of the 15 possible non-empty subsets of

these four. We tested the performance of each of these 15

feature sets for both the Lorentzian and the exponential

models. For comparison, we also tested the performance

of the four standard features cmax, A, Amax and Tmax.

Furthermore, we have defined a more complex use of a

feature set, to be denoted by a maj prefix. maj(feature1,

feature2, . . . , featuren) means the following: use each of

the n features separately for the purpose of classification,

and then decide on the final classification by a majority

rule. In total we tested 51 feature sets listed in Table 4,

including some 17 promising majority sets.

For each of the 51 feature sets we applied the nine classi-

fication schemes to 101 datasets—one excess dataset and

100 random ones. Performance, measured as the average

classification rate, was calculated for each of the feature sets.

The results are shown in Table 4, sorted from the best feature

set to the worst. As can be seen, the best feature set, which is

the one that we recommend to use in general, is

majðcmax; bLor; tLor; tLor; TLorÞ, meaning ‘classify by majority

rule from among cmax and the parameters of the Lorentzian

model’.Forcomparison, the set majðcmax;A;Amax; TmaxÞ (i.e.,

taking majority rule from among all standard features) is only

Table 4

Ranking of all feature sets studieda

Rank Feature set Rank Feature set

1 majðcmax;bLor; tLor; tLor;TLorÞ 27 ðbLorÞ
2 majðcmax;bLor; tLor; TLorÞ 28 ðbLor; tLor;TLorÞ
3 majðbLor; tLor; tLorÞ 29 ðbExp; tExp;TExpÞ
4 majðbLor; tLor; tLor;TLorÞ 30 ðbExp; tExpÞ
5 majðcmax;bLor; tLor; tLorÞ 31 ðtExp;TExpÞ
6 majðcmax;bExp; tExp; tExp;TExpÞ 32 majðcmax;A; TmaxÞ
7 majðcmax;bLor; tLorÞ 33 ðbExpÞ
8 majðcmax;bExp; tExp;TExpÞ 34 ðtLorÞ
9 majðbLor; tLor;TLorÞ 35 ðtLor; tLor;TLorÞ

10 majðbExp; tExp; tExp;TExpÞ 36 ðcmaxÞ
11 ðbLor; tLor; TLorÞ 37 ðtExpÞ
12 majðcmax;bExp; tExp; tExpÞ 38 ðtLor; tLorÞ
13 ðbExp; tExp;TExpÞ 39 ðtExp; tExp;TExpÞ
14 majðbExp; tExp;TExpÞ 40 ðbExp; tExpÞ
15 ðbLor; tLorÞ 41 ðtExp; tExpÞ
16 ðbLor; tLor; tLorÞ 42 ðAmaxÞ
17 majðbExp; tExp; tExpÞ 43 ðtLor; TLorÞ
18 ðtLor;TLorÞ 44 ðtExp;TExpÞ
19 ðbExp; tExp; tExp;TExpÞ 45 ðTExpÞ
20 ðbExp;TExpÞ 46 ðbLor; tLorÞ
21 majðcmax;bExp; tExpÞ 47 ðAÞ
22 ðbLor; tLor; tLor;TLorÞ 48 ðTLorÞ
23 majðcmax;A;TmaxÞ 49 ðTmaxÞ
24 ðbExp; tExp; tExpÞ 50 ðtExpÞ
25 majðcmax;A;Amax;TmaxÞ 51 ðtLorÞ
26 ðbLor;TLorÞ

a The lower the rank the higher the classification rate associated with the set.
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in the 25th place, the set ðcmaxÞ is in the 36th place, and the

sets ðAÞ, ðAmaxÞ, and ðTmaxÞ are in the 47th, 42nd, and 49th

places, respectively. The best non-majority feature set is

ðbLor; tLor; TLorÞ. Comparing the rankings of the Lorentzian

and exponential models, we see that the Lorentzian model is

better also with respect to classification rate. Obviously, they

are both much better than the standard features.

It is not possible to give absolute classification perfor-

mance in Table 4, since the ranking is based on many

different classification schemes and datasets. However, to

get some impression of the actual classification rates

achieved, here are several examples:

(1) Classification by the k-NN algorithm (with k ¼ 3) on

the excess dataset of the eight QMB sensors:

� majðcmax; bLor; tLor; tLor; TLorÞ gives 97.8% correct

classification.

� ðbLor; tLor; TLorÞ gives 90% correct classification.

� ðcmaxÞ gives 84.4% correct classification.

� majðcmax; bExp; tExp; tExp; TExpÞ gives 96.7% correct

classification.

(2) Classification by shortest Mahalanobis distance in the

four-dimensional space of the first four principal compo-

nents, on the excess dataset of the eight QMB sensors:

� majðcmax; bLor; tLor; tLor; TLorÞ gives 83.3% correct

classification.

� ðbLor; tLor; TLorÞ gives 96.7% correct classification.

� ðcmaxÞ gives 42.2% correct classification.

� majðcmax; bExp; tExp; tExp; TExpÞ gives 60% correct

classification.

(3) Classification by the k-NN algorithm (with k ¼ 5) on

the random dataset of the eight MOX sensors:

� majðcmax; bLor; tLor; tLor; TLorÞ gives 93.1% correct

classification.

� ðbLor; tLor; TLorÞ gives 90% correct classification.

� ðcmaxÞ gives 86.9% correct classification.

� majðcmax; bExp; tExp; tExp; TExpÞ gives 93.5% correct

classification.

6. Summary and discussion

We have introduced a new feature extraction method

based upon the idea of fitting measured signals to an analytic

model. Among the three models that we have developed, the

Lorentzian model (12) was found to be the most powerful,

combining fast computation of the parameters, excellent

robustness, and good fits to all signals. We found that the

most potent set of features was majðcmax; bLor; tLor; tLor;
TLorÞ, enabling higher classification rates than other combi-

nations of features.

Besides carrying far more information about the signals,

there is another important advantage in using an analytic

model. The sensors embedded in an eNose always interact

within a certain dynamic range. When an application

requires measuring stimuli with different characteristics

under the same working conditions, it may happen that it

would not be possible to set a dynamic range fitting all

stimuli. This would normally be reflected in driving some of

the sensors into saturation or even in partial failure. While

the computation of standard features necessitates the integ-

rity of the signals, curve-fitting can make do with only parts

of the signals—the non-corrupted ones. Therefore, not only

can the Lorentzian model parameters be computed even

when parts of the signal are corrupted, but they can actually

be used to reconstruct the damaged parts. Obviously, in such

cases we will not use the feature set majðcmax; bLor; tLor;
tLor; TLorÞ, but will rather replace it with majðbLor; tLor; tLorÞ
or majðbLor; tLor; tLor; TLorÞ.

The former claim applies also to the purpose of shortening

measurement time. The analytic model can be computed

based upon the initial part of the signal, so that one should

not wait until the completion of the measurement to extract

the features.

One might think that a model-based feature extraction

method would be sensitive to the sensor’s type and to the

apparatus’ setup. However, this is not the case. As is evident

from Table 3, the model fits equally well two different types

of sensor modules—the QMB and the MOX modules. Based

on these results, we believe that there are good chances that

our model will also fit additional sensor technologies and

embeddings, as well as different analytic devices housing

chemical sensors.

We have limited our dataset to include only transient

signals. The validity of our models to steady-state signals

has not yet been checked.
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