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Analysis of gene architecture and expression levels of four organisms, Homo sapiens, Caenorhabditis elegans,
Drosophila melanogaster, and Arabidopsis thaliana, reveals a surprising, nonmonotonic, universal relationship between
expression level and gene compactness. With increasing expression level, the genes tend at first to become longer but,
from a certain level of expression, they become more and more compact, resulting in an approximate bell-shaped
dependence. There are two leading hypotheses to explain the compactness of highly expressed genes. The selection
hypothesis predicts that gene compactness is predominantly driven by the level of expression, whereas the genomic
design hypothesis predicts that expression breadth across tissues is the driving force. We observed the connection
between gene expression breadth in humans and gene compactness to be significantly weaker than the connection
between expression level and compactness, a result that is compatible with the selection hypothesis but not the genome
design hypothesis. The initial gene elongation with increasing expression level could be explained, at least in part, by
accumulation of regulatory elements enhancing expression, in particular, in introns. This explanation is compatible with
the observed positive correlation between intron density and expression level of a gene. Conversely, the trend toward
increasing compactness for highly expressed genes could be caused by selection for minimization of energy and time
expenditure during transcription and splicing and for increased fidelity of transcription, splicing, and/or translation that is
likely to be particularly critical for highly expressed genes. Regardless of the exact nature of the forces that shape the
gene architecture, we present evidence that, at least, in animals, coding and noncoding parts of genes show similar
architectonic trends.

Introduction

One of the hallmarks of the architecture of eukaryotic
genes is their fragmented structure (genes in pieces), where
exons encoding parts of a protein are separated by noncod-
ing introns. The fraction of intron-containing genes widely
differs among eukaryotes; genes of many unicellular forms
are intron poor but in multicellular eukaryotes (plants and
animals), a substantial majority of the genes contain mul-
tiple introns (Rodriguez-Trelles, Tarrio, and Ayala 2006;
Roy and Gilbert 2006). Generally, introns are considered
to be nonfunctional, although there are many anecdotal re-
ports on the involvement of intronic sequences in various
cellular functions (Maniatis and Reed 2002; Ast 2004;
Hong, Scofield, and Lynch 2006; Ying and Lin 2006; Zhao
and Hamilton 2007).

It has been reported that introns in highly expressed
genes in human and worm tend to be shorter than those
in genes expressed at lower levels (Castillo-Davis et al.
2002). Subsequent research supported and expanded these
findings by revealing the positive correlation between gene
compactness and expression level in humans (Eisenberg
and Levanon 2003; Urrutia and Hurst 2003; Comeron
2004; Vinogradov 2004; Chen et al. 2005; Li, Feng,
and Niu 2007), mouse (Li, Feng, and Niu 2007), worm
(Vinogradov 2004; Fahey and Higgins 2007), fly
(Vinogradov 2004; Fahey and Higgins 2007), the plant

Arabidopsis thaliana (Seoighe, Gehring, and Hurst
2005), and the moss Physcomitrella patens (Stenoien
2007). This pattern, hereinafter denoted the C[E (compact-
ness increasing with expression) trend to indicate the pos-
itive association between compactness and expression, was
observed when different technologies were used to measure
expression levels, namely, expressed sequence tag libraries
(Castillo-Davis et al. 2002; Fahey and Higgins 2007;
Stenoien 2007), serial analysis of gene expression (Urrutia
and Hurst 2003; Chen et al. 2005; Seoighe, Gehring, and
Hurst 2005), and microarrays (Castillo-Davis et al. 2002;
Eisenberg and Levanon 2003; Urrutia and Hurst 2003;
Comeron 2004; Vinogradov 2004; Seoighe, Gehring,
and Hurst 2005; Li, Feng, and Niu 2007).

Why highly expressed genes are more compact? The
cell invests considerable time and energy in transcription:
transcription of a single nucleotide requires at least two ad-
enine triphosphate (ATP) molecules (Lehninger, Nelson, and
Cox 1982) and about 0.05 s (Ucker and Yamamoto 1984;
Izban and Luse 1992). Thus, the compactness of highly ex-
pressed genes was attributed to selective forces that act to
minimize the expenditure of energy and/or time on transcrip-
tion (Castillo-Davis et al. 2002). This ‘‘selection hypothesis’’
received wide support from many authors (Eisenberg and
Levanon 2003; Urrutia and Hurst 2003; Chen et al. 2005;
Seoighe, Gehring, and Hurst 2005; Li, Feng, and Niu 2007).

However, an important observation that is not readily
explained by the selection hypothesis is that intergenic re-
gions also tend to get shorter near highly expressed genes
(Urrutia and Hurst 2003; Vinogradov 2004). Although
Urrutia and Hurst (2003) showed that the C[E trend re-
mains highly significant even after controlling for this ef-
fect, Vinogradov (2004) reached the opposite conclusion.
These findings led Vinogradov to propose an alternative
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concept, the ‘‘genomic design’’ hypothesis, according to
which broadly expressed genes need simpler regulation,
and therefore fewer regulatory elements, and less space
to accommodate them than genes that are expressed only
in specific conditions or tissues. The latter, narrowly ex-
pressed genes are thought to require more complex regula-
tion and accordingly more space (both within the gene and
in the flanking regions) to accommodate regulatory ele-
ments. Given that expression breadth and expression level
are positively correlated, broadly expressed genes are, on
average, also more highly expressed, thus highly expressed
genes are more compact.

The presence of short intergenic regions near highly
expressed genes correlates with the tendency of highly ex-
pressed genes to cluster along the genomic DNA (Caron
et al. 2001; Lercher, Urrutia, and Hurst 2002), suggesting
that local mutational bias might also contribute to the
C[E trend. This complication notwithstanding, control-
ling for various local characteristics like GC content, sev-
eral authors demonstrated that the C[E trend remains
highly significant (Castillo-Davis et al. 2002; Urrutia
and Hurst 2003; Comeron 2004; Seoighe, Gehring, and
Hurst 2005).

Surprisingly, given the consistent support of the pos-
itive correlation between gene expression and compactness
in diverse organisms, the opposite trend, hereinafter de-
noted the CYE trend, has been reported in flowering plants,
the monocot Oryza sativa (rice), and the dicot A. thaliana
(Ren et al. 2006).

These opposing observations require explanation. One
obvious possibility is that the forces that shape the gene ar-
chitecture in plants and animals are different (Ren et al.
2006). Else, there could be a substantial methodological
difference between the work of Ren et al. (2006) and the
studies that report the C[E trend, especially considering
that the study of Ren et al. is unique in using the massively
parallel signature sequencing (MPSS) technology (Brenner,
Johnson, et al. 2000; Brenner, Williams, et al. 2000) to
measure expression levels.

Given the reported opposite trends and the uncertainty
with regard to the evolutionary forces that shape the depen-
dence between gene compactness and expression, we
sought to analyze this dependence in multicellular eukar-
yotes within a more comprehensive framework. We exam-
ined compactness in terms of multiple-length variables,
such as the length of the entire transcript, the length of
the protein-coding sequence, the combined lengths of all
coding and noncoding exons, and the combined lengths
of the introns. In addition, we investigated a distinct char-
acteristic of genes related to compactness, the intron den-
sity, in connection with expression. We show that, in both
animals and plants, highly expressed genes are more com-
pact than lowly expressed genes and explain how the anal-
ysis of Ren et al. (2006) might give rise to an appearance of
a negative trend. The relationship between expression level
and gene compactness in both plants and animals turned out
to be nonmonotonic. We demonstrate, particularly for in-
trons, a tendency to become longer (hence the genes to be-
come less compact) with increasing expression levels, for
lower expression levels. This nonmonotonic trend might re-
sult from the combined effect of opposing selective forces

that make genes more compact for high levels of expression
but make them less compact for lower levels of expression
owing, at least, in part, to accumulation of regulatory ele-
ments in introns.

Methods
Genome Annotation

The following genome annotations were used:

� Homo sapiens: RefSeq GenBank flat files build 36 (14
September 2006), downloaded from ftp://ftp.ncbi.nih.
gov/genomes/H_sapiens;

� Caenorhabditis elegans: RefSeq GenBank flat files (28
November 2005), downloaded from ftp://ftp.ncbi.nih.
gov/genomes/Caenorhabditis_elegans;

� Drosophila melanogaster: FlyBase version 3.1, down-
loaded from ftp://ftp.flybase.net/genomes/Drosophila_
melanogaster/dmel_r3.1/fasta;

� Arabidopsis thaliana: RefSeq GenBank flat files (down-
loaded on 15 April 2008), downloaded from ftp://
ftp.ncbi.nih.gov/genomes/Arabidopsis_thaliana.

Genome files were parsed using in-house Perl and
Matlab scripts. Only genes for which messenger RNA
(mRNA) record as well as coding sequence (CDS) record
could be identified were included in the analysis, as lengths
of introns, exons, and so on, were computed by comparing
the mRNA structure with the CDS structure. Genes anno-
tated as pseudogenes were removed. Genes annotated as
having alternative isoforms were excluded from the analy-
sis, unless all the isoforms differed only in their untrans-
lated regions (UTRs). In that case, introns and exons
within the coding region were analyzed, and the UTRs’
information was discarded.

Expression Level

Expression-levelmeasurementswerefromthefollowing
sources:

� Homo sapiens: The data of Su et al. (2004) obtained
with the Affymetrix GeneChip Human Genome U133
Array Set HG-U133A (see http://www.affymetrix.com/
products/arrays/specific/hgu133.affx) were employed.
In this study, the microarrays were used to measure
expression in 79 different tissues, each in two
repetitions. Some tissues, such as brain, blood, and
bone marrow, are overrepresented in Su’s data set. Other
tissues are cancerous. We have therefore selected 32
nonredundant, normal tissues for the analyses in the
current study (supplementary table S5, Supplementary
Material online).

� Caenorhabditis elegans: Combined measurements from
several studies, all employing the Affymetrix GeneChip
C. elegans Genome Array (see http://www.affymetrix.
com/products/arrays/specific/celegans.affx) (Baugh et al.
2005; Fox et al. 2007; Falk et al. 2008), were used. Only
expression in wild-type specimens was included. The
final data set included 34 samples from Baugh et al.
(2005), 7 samples from Fox et al. (2007), and 7 samples
from Falk et al. (2008), 48 samples in total.
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� Drosophila melanogaster: Measurements from two
studies using the Affymetrix GeneChip Drosophila
Genome 2.0 Array (see http://www.affymetrix.com/
products/arrays/specific/fly_2.affx) (Chintapalli, Wang,
and Dow 2007; Kadener et al. 2007) were analyzed.
Only expression in wild-type specimens was included.
The final data set included 10 samples (control only)
from Kadener et al. (2007) and 44 samples from
Chintapalli, Wang, and Dow (2007).

� Arabidopsis thaliana: The results of Meyers et al.
(2004), which comprise one of the plant MPSS
databases (Nakano et al. 2006), were analyzed.
Expression was measured using the 17-bp signature
MPSS technology. Only untreated samples were used,
summing up to 10 samples in total (AP1, AP3, AGM,
INS, ROS, SAP, LES, GSE, CAS, SIS [see ‘‘Library
information’’ in http://mpss.udel.edu/at]).

Probes/target sequences that had matches in multiple
genes were removed from the analysis. When multiple
probes/target sequences matched a single gene, their av-
erage was taken. Only genes for which expression meas-
urements were available were included in the analysis. The
final data set consisted of 9,355 human genes, 10,071 fly
genes, 15,438 nematode genes, and 14,184 Arabidopsis
genes (see supplementary table S6, Supplementary Mate-
rial online, for more statistics on the data set). Therefore,
for a given organism, each gene in the data set has one
expression-level measurement per sample. In order to
put expression-level measurements from different experi-
ments and different tissues on the same scale, we followed
a technique proposed by Ren et al. (2006): For each organ-
ism, the expression data are a matrix ED with ng rows
(number of genes) and ns columns (number of samples).
Let C be a predefined number of categories. Then, each
column (sample data) is ranked intoC categories, such that
the genes with the lowest expression levels have the value
1 and the genes with the highest expression levels have the
value C. The number of genes in each category is kept ap-
proximately equal (as closely as possible). At the end of
this process, we obtain another ng � ns matrix, ER, with
ranks replacing the original expression values. In order to
obtain a single expression-level value per gene, the ranks
in every row were averaged, and the result was rounded to
the nearest integer. Formally, the expression of a gene g is
given by

EðgÞ5 round

�
1

ns

X
i

ERðg; iÞ
�
:

In this work we always use C5 30, but the results are
robust to the C value (data not shown). Such definition of
the expression of a gene allows combining many expression
data sources but comes at the expense of using ranks. This
approach allows one to analyze the general trends in the
relationship between expression and compactness, as we
do in this work, but masks the specific details of this rela-
tionship. We verified that adopting another strategy, based
on the popular log2 expression values instead of ranks over
samples, yielded qualitatively the same results (supplemen-
tary fig. S1, Supplementary Material online).

Expression Breadth

It is customary to define a threshold for making a bi-
nary decision whether a gene is present or absent in a par-
ticular tissue/condition. Such binary decisions are, by
definition, somewhat arbitrary, so in this study we em-
ployed six different threshold values. These threshold val-
ues were taken as the expression levels that correspond to
a certain percentile of the expression levels, ranging from
10% to 60% (see supplementary table S7, Supplementary
Material online). Expression breadth was computed only
for human genes and was defined as the number of tissues
where the gene is called expressed under the corresponding
threshold.

Segmented Regression

Segmented regression is the process of fitting data to
possibly more than one linear segment (Oosterbaan 1994).
We used the SegReg (http://www.waterlog.info/segreg.
htm) software, which selects the most statistically signifi-
cant linear model that consists of up to two linear segments.
When a two-segment model is the most appropriate one, the
program computes the bend point and estimates its standard
error.

Results
The Relationship between Gene Compactness and
Expression Level Is Universal and Nonmonotonic

We measured gene compactness using several length
variables. Total lengths variables are the total transcript
length, the length of the protein-coding (CDS) region,
the combined lengths of all coding and noncoding exons,
and the total length of introns (supplementary fig. S2, Sup-
plementary Material online). Whenever available, we also
analyzed lengths of the 3# untranslated regions (UTRs) and
the 5#UTRs. Per-gene length variables are the mean and
median lengths of the exons and the introns. Expression
levels were binned into 30 classes (see Methods), and
the average value of each of the length variables in each
of the 30 expression levels was computed across all the
genes.

Qualitatively, all the organisms showed the same non-
monotonic dependence between expression level and each
of the total length variables (fig. 1, supplementary fig. S3,
Supplementary Material online). The compactness of genes
decreases with the increasing expression level for low ex-
pression levels (the CYE trend) and then increases with the
increasing expression level for the high expression levels
(the C[E trend). To statistically validate the trend of mono-
tonic increase of the gene length variable values followed
by the monotonic decrease (hereinafter the K-shape), we
employed segmented regression using the SegReg software
(see Methods). The K-shape was statistically significant in
all four organisms and for all the four total length variables
(table 1). Notably, the K-shape is more significant than any
monotonic trend alone. Specifically, the K-shape was
highly significant in A. thaliana, and we did not obtain
any support for the claim of Ren et al. (2006) that highly
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expressed genes were less compact than lowly expressed
genes in this plant. The lack of agreement with Ren
et al. appears to stem, largely, from a series of methodolog-
ical differences. Among these are the differences in select-
ing the tissues and genes that comprised the database and
differences in the way that highly expressed genes were
compared with lowly expressed ones. A detailed discussion
of the possible reasons for the failure to detect the shorten-
ing of highly expressed genes by Ren et al. (2006) is avail-
able in the Supplementary Text (Supplementary Material
online).

In all organisms and for all total length variables, the
slope of the increasing part has a smaller absolute value than
the slope of the decreasing part. In other words, theK-shape is
always nonsymmetrical: The CYE trend seen for the weakly
to moderately expressed genes is relatively weak and gradual,
whereas the C[E trend that is characteristic of more highly
expressed genes is considerably steeper (fig. 1).

Comparing the lengths of UTRs to expression levels
yielded no significant trend (supplementary figs. S4 and S5,
table S1, Supplementary Material online). It remains uncer-
tain whether this is an indication of a genuine lack of de-
pendence or a reflection of the poor annotation of the UTRs.

Individual Introns Show K-Shape Dependence on
Expression Level, whereas Individual Exons Show
Monotonicity

Mean exon lengths do not display a K-shape depen-
dence on the expression level except for a possible weak
effect in Arabidopsis (fig. 2 and supplementary fig. S6
[Supplementary Material online], table 1). Human and
fly show a clear monotonic decrease (a trend that is seen
also in Arabidopsis except for the slight increase for lowly
expressed genes), whereas, in a striking contrast, C. elegans
shows a monotonic increase. As mean exon lengths reflect
the combined effect of intron density and total protein
lengths, the increase in average exon length with increasing
expression level in C. elegans is likely to be linked to the
high rate of intron loss in nematodes (Carmel, Wolf, et al.
2007).

By contrast, length–expression curves for the mean
(fig. 2, table 1) and median (supplementary figs. S7 and
S8, table S2, Supplementary Material online) intron length
show a K-shape in all organisms. Thus, the nonmonotonic
K-trend that is observed for the total length measures seems
to be primarily associated with the changes in the length of
introns.

FIG. 1.—Total length variables as functions of expression-level category. All lengths are measured as number of nucleotides. Expression levels are
binned into 30 categories, with higher categories matching higher expression levels. Each dot is the mean value for all genes in the given expression
category, and the error bar indicates the standard deviation of the mean. Dark areas depict the area (standard error) of the bend point where the trend
changes from increasing to decreasing, according to SegReg.
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Similar Dependence on Expression Level for Coding and
Noncoding Regions

Both the selection and the genomic design hypotheses
imply dependence between the expression level of a gene

and the total length of the introns or the exons rather

than the corresponding means. Our present findings reveal

qualitatively the same, K-shape of the length–expression

curve for all employed total length variables. In itself, this

universal form of the dependence does not, of course, in-
dicate that the details of this dependence, in particular,
for exons and introns, are the same.

To further compare the dependences of the coding and
noncoding regions on expression level, we computed for all
the genes in each organism the correlation between the CDS
length and the total intron length (the raw correlation) and
found it to be positive and significant in all cases (table 2). If
this correlation ensues from the two variables being

Table 1
The Nonmonotonic Dependence between Gene Length Variables and Expression

Bend Point Left Fraction Left Slope Right Slope

Total transcript length HS 12.6 ± 0.5 0.37 1,170 ± 487 -2,440 ± 243
DM 17.5 ± 0.7 0.59 118 ± 24 -119 ± 19
CE 23.9 ± 0.4 0.80 84.4 ± 4.7 -258 ± 18
AT 15.8 ± 1.3 0.80 22.5 ± 4.2 -68.6 ± 3.0

CDS length HS 21.9 ± 0.2 0.76 6.17 ± 3.4 -109 ± 12
DM 22.8 ± 0.5 0.79 30.9 ± 3.4 -102 ± 7
CEa 20.1 0.71 17.2 ± 1.8 -38.8 ± 6.5
AT 15.8 ± 16.6 0.80 6.09 ± 2.5 -55.5 ± 1.7

Total exon length HS 21.6 ± 6.3 0.76 18.3 ± 4.8 -171 ± 7
DM 22.8 ± 0.5 0.79 42.4 ± 3.6 -81.4 ± 8.0
CEa 22.2 0.77 25.7 ± 1.7 -57.9 ± 9.2
AT 15.8 ± 2.7 0.80 12.7 ± 2.5 -55.8 ± 1.8

Total intron length HS 12.6 ± 0.5 0.37 1,070 ± 484 -2,370 ± 241
DM 16.9 ± 0.6 0.56 76.1 ± 17.4 -101 ± 25
CE 22.5 ± 0.4 0.77 60.7 ± 4.3 -161 ± 14
AT 15.8 ± 1.0 0.80 9.8 ± 2.3 -12.8 ± 1.7

Mean exon length HS -5.58 ± 1.31 -13.40 ± 1.76
DMb -2.09 ± 1.32 -22.2 ± 2.26
CE 1.69 ± 0.34 4.62 ± 0.29
AT 9.4 ± 0.4 0.64 4.25 ± 2.14 -11.10 ± 1.22

Mean intron length HS -93 ± 29 -237 ± 37
DM 14 ± 2.3 0.48 9.48 ± 6.45 -10.2 ± 2.9
CE 21.9 ± 0.6 0.74 7.77 ± 0.92 -17.2 ± 2.2
ATc

The results of segmented regression applied to the data in figure 1. Bend point: The expression-level category that is the border between the increasing and the

decreasing parts, as decided by SegReg. The ± symbol indicates standard error (SE). Whenever the curve does not show K-shape, the bend point is not reported. Left

fraction: The fraction of genes in the increasing part of the curve. Left slope: The slope of the left part of the curve, as computed by SegReg. The ± symbol indicates SE.

Right slope: The slope of the right part of the curve, as computed by SegReg. The ± symbol indicates SE. If not otherwise indicated, SegReg found statistical support in

favor of two joint linear segments.
a SegReg found statistical support for two disjoint linear segments.
b Computation was made on median values.
c Computation failed in SegReg (software crashed).

FIG. 2.—Mean lengths of exons and introns as functions of expression-level category. All designations are as in figure 1.
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similarly dependent on the expression level, the correlation
is expected to increase when computed for the mean values
in each expression-level class (binned correlation). Indeed,
such an increase in the correlation coefficient was invari-
ably seen (table 2). Such an increase in correlation is ex-
pected with any binning that is identical for both
variables due to noise reduction. Therefore, we tested the
significance of the specific increase due to binning by ex-
pression level by randomly assigning the expression-level
classes to the genes 1,000 times, and computing the corre-
lation coefficient between the CDS length and the total in-
tron length for the resulting random data sets. The increase
in the correlation above the normal increase due to binning
was found to be significant in all species except A. thaliana
(table 2). Thus, at least, in animals, coding and noncoding
parts of the gene seem to show similar dependence on the
expression level.

However, although qualitatively similar, these depen-
dencies are clearly distinct as indicated by the different
shapes of the dependence for the mean lengths of exons
and introns (fig. 2). We further explored these differences
by comparing the locations of the bend point, that is, the
point where the trend changes from CYE to C[E, for
the exons and the introns. Comparing expression-level cat-
egories between organisms involves considerable uncer-
tainty. Nevertheless, assuming similar expression-level
distributions in all species, the relative positions of the bend
point can be compared by counting the fraction of genes
that are in the increasing (CYE) part (table 1). Of course,
such a comparison is meaningful only when the behavior of
the entire ensemble of genes is considered: Identical bend
points in different organisms are likely to represent different
absolute expression levels. The positions of the bend point
differed between organisms and, at least for human and fly,
between the introns and the exons. In general, bending oc-
curs at lower expression levels in introns compared with
exons. Together with the observations of the preceding sec-
tion, these findings indicate that the K-shape is more prom-
inent in introns; in particular, the tendency of introns to be
elongated with increasing expression (for lower expression
levels) is more pronounced than the similar tendency for
exons. Furthermore, the bend point in the plots for total
transcript length and the total intron length but not the
CDS or total exon length is shifted to the left in humans

compared with all other organisms (fig. 1, table 1). The dif-
ference in the position of the bend point suggests that in
humans the selective forces that underlie the C[E trend be-
come prevalent at a relatively lower expression level than in
other organisms, in all likelihood, because humans on av-
erage have much longer introns than invertebrates or plants.

Expression Level Correlates with Gene Compactness
Stronger than Expression Breadth

In agreement with previous observations (Eisenberg
and Levanon 2003), gene expression breadth (i.e., the num-
ber of tissues in which a gene is expressed above a threshold
level) in human is positively and highly significantly cor-
related with expression level (supplementary table S3, Sup-
plementary Material online). However, for all total length
variables and for all threshold values, the segmented regres-
sion against breadth explained less variance than the seg-
mented regression against expression level
(supplementary fig. S9, table S3, Supplementary Material
online).

Differences in GC Content Cannot Explain the Observed
Relationship between Gene Compactness and Expression
Level

To determine whether our findings could be affected
by local mutational biases that are known to depend on the
base pair composition of DNA (Duret, Mouchiroud, and
Gautier 1995), we computed average GC values for all
exons, all introns, and the protein-coding sequences in hu-
man. As with expression breadth, GC content did not show
any significant trend, neither concave nor monotonic, with
the expression level (supplementary fig. S10, table S4,
Supplementary Material online).

Intron Density Tends to Increase with Expression Level

We observed previously that introns appear to be
gained at higher rates in evolutionarily highly conserved
genes than in faster evolving genes, with the implication
that the intron density of a gene might be functionally rel-
evant (Carmel, Rogozin, et al. 2007). Similarly, it was
shown that ancient eukaryotic genes, on average, have
a higher intron density than genes of apparent more recent
origin (Wolf et al. 2009). We computed intron density for
the four analyzed organisms as a function of expression-
level category for all four organisms (fig. 3). In accord with
the previous findings (Carmel, Rogozin, et al. 2007), there
was a significant positive correlation between expression
level and intron density in three of the four analyzed organ-
isms (table 2). Only C. elegans showed the opposite trend,
as previously reported by Fahey and Higgins (2007), pos-
sibly, owing to its atypically high intron loss rate (Carmel,
Wolf, et al. 2007). Our results agree with those of Fahey and
Higgins for the nematode but not for D. melanogaster for
which they report the same trend as in C. elegans, whereas
we observe a trend consistent with that seen in human and
Arabidopsis (fig. 3).

Table 2
Raw versus Binned Correlation Coefficients

CDS Length -
Total Intron Lengtha

Intron Density -
Expression Levelb

Raw
Correlation

Binned
Correlation

P
Value

Raw
Correlation

Binned
Correlation

P
Value

HS 0.30 0.85 0.01 0.11 0.93 ,0.001
DM 0.20 0.69 0.01 0.13 0.73 ,0.001
CE 0.28 0.81 0.01 -0.20 -0.93 ,0.001
AT 0.52 0.58 0.40 0.06 0.84 ,0.001

Raw correlation: The correlation was computed using all the genes. Binned

correlation: The correlation was computed between the mean values across the

expression-level categories. P value: The significance of the correlation change due

to the binning was computed using 1,000 bootstrap repetitions.
a Pearson (linear) correlation.
b Spearman correlation.
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The increase in intron density in parallel with in-
creased expression is likely to reflect widespread functional
importance of introns in eukaryotic genomes. This relation-
ship is further supported by the substantial increase of the
correlation coefficient when computed using the mean
value of the intron density in each expression-level class
(table 2).

Discussion

Comparative analysis of the connections between gene
architecture and expression levels in four multicellular eu-
karyotes, H. sapiens, C. elegans, D. melanogaster, and
A. thaliana, revealed a universal qualitative relationship be-
tween expression level and compactness (fig. 4). Unexpect-
edly, this trend is nonmonotonic whereby, up to a certain
limit, genes become less compact with the increase of the
expression level (the CYE trend), but with further increase
in expression, become more compact again (the C[E
trend). Thus, somewhat paradoxically, eukaryotic genes
with the lowest expression level tend to be about as compact
as the most highly expressed genes, whereas moderately
expressed genes are the least compact ones.

Numerous results of comparative genomics and evo-
lutionary systems biology indicate that gene evolution is
shaped by complex interaction of many factors, some of
which are general, whereas others are gene-specific, and
some are selective, whereas others are neutral (Nei 2005;
Lynch 2007; Ellegren 2008; Koonin 2009). The existence
of a universal, nonmonotonic dependence between gene
compactness and expression level seems to suggest that
gene architecture depends on the interplay of several factors
at least some of which are selective. The bending of all the
expression–length curves at the transition from moderate to
high expression levels (fig. 1) seems to be incompatible
with a single underlying mechanistic cause. Furthermore,
we identified a significant positive correlation between in-
tron density and expression level, in all analyzed organisms
except for C. elegans. Combined with the previous obser-

vations on the higher intron density and increased intron
gain rate in evolutionarily conserved genes (Carmel,
Rogozin, et al. 2007; Wolf et al. 2009) and the strong pos-
itive correlation between expression level and evolutionary
conservation (Pal, Papp, and Hurst 2001; Koonin and Wolf
2006; Drummond and Wilke 2008; Wolf et al. 2009), this
link is compatible with a functional significance of introns
in expression, perhaps, leading to selection for intron accu-
mulation. Indeed, multiple pieces of evidence in support of
the involvement of introns in the regulation of expression of
individual genes have been reported (Le Hir, Nott, and
Moore 2003; Nott, Meislin, andMoore 2003; Moore 2005).

In contrast to the highly significant (even if complex)
link between expression level and gene compactness, we
found a much weaker dependence between compactness
and expression breadth across animal tissues. This observa-
tion directly falsifies the principal prediction of the genome
design hypothesis (Vinogradov 2004).

Thus, the results of the present analysis favor the selec-
tion hypothesis as the principal explanation why highly ex-
pressed genes are more compact than genes expressed at
a lower level (the C[E trend). What factors underpin this
selection remains an open question. The original explanation
implicated the minimization of ATP expenditure and time
spent on the expression (transcription combined with tran-
script maturation) of the given gene (Castillo-Davis et al.
2002). These remain potentially relevant factors, but their ul-
timate importance could be questioned considering that the
expenditure of both energy and time during transcription is
small compared with that during translation, whereas the
connection between intron length and splicing rate is uncer-
tain. An alternative selective factor could be the fidelity of
transcription, splicing, and in the case of exon sequences,
translation. Evolution of both nonsynonymous and synony-
mous sites in protein-coding sequences, in particular, those
of highly expressed genes, appears to be substantially con-
strained by selection for robustness tomistranslation-induced
protein misfolding (Drummond and Wilke 2008; Wolf,
Wolf, and Koonin 2008). Selection for short exons in highly

FIG. 3.—Intron density of genes as a function of expression-level
category. The intron density is measured as the number of introns per
kilobase of the CDS. Color codes: blue 5 human, black 5 Drosophila,
red 5 nematode, and green 5 Arabidopsis. All other designations are as
in figure 1.

FIG. 4.—The universal nonmonotonic relationship between the
expression level of a gene and its compactness: a schematic depiction.
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expressed genes could be part of the same general trend. Sim-
ilarly, selection for short introns might have to do with the
minimization of splicing errors that result in the formation of
partially spliced transcripts which could be not only a waste
of time and energy but also, perhaps, more importantly,
a source of potentially toxic, misfolded proteins.

Explaining the negative trend (CYE) between gene
compactness and expression that is observed for genes that
are expressed at lower levels seems to be more difficult than
interpreting the positive trend. Highly expressed genes, on
average, encode more evolutionarily conserved proteins
than lowly expressed genes (Koonin andWolf 2006; Drum-
mond and Wilke 2008). This trend is a key aspect of the
‘‘status’’ of a gene in an organism, a proxy of its biological
importance, broadly understood (Koonin and Wolf 2006).
The increased total length of introns in moderately ex-
pressed genes compared with lowly expressed genes, in
part, is due to the increased intron density. However, the
(CYE) trend is clearly seen even in C. elegans, where intron
density drops with the increase in expression level. The
most relevant phenomenon to account for the (CYE) trend
might be the accumulation, in introns, of regulatory ele-
ments contributing to expression (Le Hir, Nott, and Moore
2003; Nott, Meislin, and Moore 2003; Moore 2005). Thus,
perhaps paradoxically, a version of the genomic design hy-
pothesis could be relevant to explain the negative correla-
tion between expression and gene compactness that is seen
on the low end of the expression scale.

The most surprising finding of this analysis seems to
be the universality of the dependence between expression
level and gene compactness in all analyzed organisms (figs.
1 and 4), in spite of the major differences in their gene ar-
chitectures. As a case in point, the trend between the total
gene length and expression level is essentially the same in
humans and Arabidopsis despite the fact that, in humans,
the total length of introns is much greater than that of exons,
whereas the opposite holds for Arabidopsis. Thus, the evo-
lutionary factors that shape the dependence between gene
compactness and expression appear to be more fundamental
than those that govern the evolution of gene architecture
(determined, primarily, by intron lengths), in agreement
with the growing evidence that expression is one of the ma-
jor determinants of gene evolution (Drummond and Wilke
2008; Wolf, Wolf, and Koonin 2008). The effects of gene
compactness on expression are certainly amenable to fur-
ther comparative-genomic and experimental analyses,
which should lead to insights into the nature of the universal
relationship described here.

Supplementary Material

Supplementary figures S1–S10, tables S1–S7, and
supplementary text are available at Genome Biology
and Evolution online (http://www.oxfordjournals.org/our_
journals/gbe/)
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