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Estimating the Size of the Olfactory Repertoire
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The concept of shape space, which has been successfully implemented in immuno-
logy, is used here to construct a model for the discrimination power of the olfactory
system. Using reasonable assumptions on the behaviour of the biological system,
we are able to estimate the number of distinct olfactory receptor types. Our es-
timated value of around 1000 receptor types is in good agreement with experi-
mental data.
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1. INTRODUCTION

Biological systems that are to encounter diverse stimuli do not usually develop a
specific receptor for each stimulus type. Rather, they normally adopt a strategy of
building a set of nonspecific receptors. The term ‘nonspecificity’ means that each
receptor type responds, with different affinities, to a variety of stimuli. A stimulus
introduced into the system elicits a typical, characteristic, response pattern, known
as itsspectrumor its fingerprint. The number of different receptor types in such
a nonspecific system is referred to as therepertoire size. Two typical examples
of such systems are the immune system and the olfactory system. The repertoire
size of the former is apparently on the order of 107 [see, for example,Janeway and
Travers(1997), part 2, Chapter 3], while the repertoire size of the latter is assessed
to be in the range of 300–1000 [see, for example,Mori and Yoshihara(1998)]†.

In this paper we concentrate on estimating the sizer of the olfactory repertoire.
The reasons forr being at its current size are not well-understood, and revealing
them is an intriguing puzzle.Lancetet al. (1993) used a mathematical descrip-
tion of the receptor–ligand interaction and utilized some other measured quantities

†More accurately, the repertoire size of most mammals is probably around 1000, among which only
about 300 are active receptors in humans.
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to obtain theoretical estimations ofr in the range 300–1000. We use the same
mathematical description for modelling the interactions, but take a totally different
approach to the estimation ofr . We use several simple and intuitive assumptions
to derive an order of magnitude estimation ofr , around 1000, well in agreement
with current assessments.

Section2 presents our underlying model. In Section3 we derive a formula for
the repertoire size of the olfactory system. Section4 is devoted to a discussion.

2. THE M ODEL

Let us assume that odour molecules, hereinafter the ligands, can be described
as vectors in some metric spaceE, and that their fingerprints can be described as
vectors in a different metric space,F . By metric space we mean a space on which
a distance function is defined, so that there is a meaning to terms such as ‘close’
ligands, ‘distant’ ligands, ‘close’ fingerprints and ‘distant’ fingerprints. The metric
of E is assumed to measure how similar ligands are with respect to their binding
affinities to the olfactory receptors. In that sense ‘close’ ligands elicit similar re-
sponses of the sensory system, and ‘distant’ ligands elicit different response of the
sensory system. Whenever we use the terms ‘close’ and ‘distant’ with respect to
ligands, it should be understood with respect to their binding affinities, and one
should keep in mind that ‘identical’ ligands inE do not have to be structurally
identical. The metric ofF is assumed to measure how similar ligands are with
respect to their perception. We used these abstract spaces to estimate the olfactory
repertoire size, by identifying that the interaction between olfactory receptors and
odour molecules is just a mapping between these two spacesf : E → F . Simple
biological requirements imply basic properties of the mappingf :

(1) Ligand discrimination: We require that different ligands will not have the
same fingerprint. Using the notationHi to denote elements inE, we demand
that f (H1) 6= f (H2) wheneverH1 6= H2.

(2) Proximity preservation: Since the perception is determined from the finger-
prints, we require that close ligands are mapped into close fingerprints, or,
more formally, that∇H f (the gradient off with respect toH ) is small. In
a sense, this requirement determines the robustness of the system. Biologi-
cal stimuli of the same nature are never expected to produce an identical re-
sponse of the sensory system, but we still expect their fingerprints to be close.

(3) Remoteness preservation: The most tricky observation is that distant
ligands (eliciting different response in the sensory system) must have
distant fingerprints. For if different ligands yield similar fingerprints, the
classification process in the brain may wrongly identify them as being of the
same type.

The last two observations are analogous to saying that there must exist some
sort of correlation between distances inE and in F . Close objects inE must
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be mapped into close objects inF , and distant objects inE must be mapped into
distant objects inF .

A realization of such a ‘ligand space’E was first introduced byPerelson and
Oster(1979), in the context of immunology theory. They argued that both receptors
and ligands can be described asN-dimensional vectors in a spaceE which they
dubbed theshape space. The underlying logic of such a description is that the
strength of the noncovalent binding between two proteins is determined by the
properties of thebinding sitesof these proteins, and that these properties can be
characterized by a (relatively short) list ofN numbers. Each such number, or
coordinate, is customarily called asubsite, and is identified with properties such as
charge, hydrophobicity, and geometric shape. We identifyE with the shape space
throughout the rest of the paper.

Several implementations of the shape space concept have been successfully used
in immunology, especially in the fields of immune networks and cross-reactivity
[(Segel and Perelson, 1988; Weisbuch, 1990; De Boer and Perelson, 1991; Lancet
et al., 1993; Weisbuch and Opera, 1994; Smithet al., 1997; Detourset al., 1997),
see also reviews inPerelson and Weisbuch(1997) or Perelson and Wiegel(1999)].

In this paper we adopt a popular realization of shape space used in certain vari-
ations by most of these authors. This realization, that we dub thediscrete shape
space, takes both ligands and receptors to beN-dimensional vectors over a finite
alphabet of sizeS, E = {1,2, . . . , S}N . Thematch, L, between a receptorR =
(R1, R2, . . . , RN) and a ligandH = (H1, H2, . . . , HN) is just

L =
N∑

i=1

δS+1,Ri+Hi , (1)

whereδx,y is 1 for x = y and 0 otherwise. This law is an implementation of
a complementarity principle, which states that each pair of corresponding coor-
dinates of the shape space match if their sum equalsS+ 1. The numberL ∈
[0, N] is a measure of the interaction strength between the receptor and the lig-
and. Using this shape space, and under the assumptions of the model,Lancetet
al. (1993) demonstrated thatL is proportional to lnK , whereK is theassocia-
tion constant, or affinity, of the receptor–ligand interaction. Ifr receptors interact
with a certain ligand, the fingerprint of this ligand can be represented by ther -
tuple (L1, L2, . . . , Lr ), and accordingly we define the ligand fingerprint spaceF
asF = {0,1, . . . , N}r .

The concept of shape space has been used almost exclusively in immunology
theory. Lancetet al. (1993) claimed that these notions apply also to other non-
specific sets of receptors, including the olfactory system. They assumed a discrete
shape space and used immunological experimental data to determine that the best
fit values ofN andSare 10 and 8, respectively. In the absence of measured values
for olfaction, we adopt the assumption ofLancetet al. (1993) and take these values
to also hold for olfaction.
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Equipped with realizations ofE andF , we can now turn to define distance func-
tions on both spaces. Such distance functions can be chosen in various ways. Since
we are only after an order of magnitude estimation forr , the calculations are in-
sensitive to the details of the distance functions.

The natural choice of distance in the shape spaceE is

dH1H2 =

N∑
i=1

(1− δ(H1)i (H2)i ), (2)

which is the number of different subsites inH1 and H2. For example, the dis-
tance between the two ligandsH1 = (1,2,2,3,1,1) andH2 = (1,2,3,3,1,2) is
dH1H2 = 2.

The natural choice of distance inF-space is theManhattan distance[see defini-
tion in e.g.,Kohonen(1997)],

Dr
H1H2
=

r∑
k=1

|L2k − L1k|, (3)

whereL ik is the match between receptorRk and ligandHi , andr is the total number
of receptors.

3. ESTIMATION OF THE REPERTOIRE SIZE

In the previous section we employed simple biological observations to put three
constraints on the functionf . We now use these constraints to get lower bounds
on the repertoire size,r . These bounds will be functions ofN andS, and for their
numerical evaluation we use the proposed values ofN = 10 andS= 8, taken from
Lancetet al. (1993).

3.1. First constraint: ligand discrimination. For this requirement to hold, a
necessary condition is that the number of possible fingerprints should exceed the
number of possible ligands. The overall number of ligands in theE-space isSN ,
while the overall number of fingerprints in theF-space is(1+ N)r . Therefore, we
must have

(1+ N)r ≥ SN,

or

r ≥
N ln S

ln(1+ N)
. (4)

For N = 10 andS= 8 this yields

r ≥ 9. (5)
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This is indeed a lower bound, but we can do better. Assuming a uniform distri-
bution of the subsites, the probability of two subsites being complementary is just
1/S. Therefore, the probability function (PF) for getting a matchL between an
arbitrary receptor and an arbitrary ligand is simply the binomial, namely

P(L) =

(
N

L

)(
1

S

)L(
1−

1

S

)N−L

. (6)

The most probable match isL0 = b(N+1)/Sc (the notionb.c stands for the closest
integer from below), and the probability of this being the case is denoted byP0 =

P(L0). For r receptors, the most probable fingerprint isL̄0 = (L0, L0, . . . , L0)

and its probability isPr
0 . Out of a total ofSN ligands,Pr

0 · S
N of them will have

the most probable fingerprint,L̄0. We may thus pose a constraint requiring that on
the average there will be no more than one ligand with that fingerprint,

Pr
0 · S

N
≤ 1,

or

r ≥
N ln S

ln(1/P0)
. (7)

This inequality is more restrictive than the previous one. In the case ofN = 10
andS= 8 it yields

r ≥ 22. (8)

This lower bound ensures, in a probabilistic sense, that the fingerprint mechanism
is discriminatory, i.e., that no two ligands have the same fingerprint.

3.2. Second constraint: proximity preservation.Let H1 andH2 be two ligands,
and let their distance inE be dH1H2. Then, for a single receptor their distance
D1

H1H2
in F is bounded from above bydH1H2, since the response of the receptor to

identical subsites is the same. Similarly, forr receptorsDr
H1H2

is bounded by

Dr
H1H2
≤ r · dH1H2.

For this reason, the distances inF are bounded proportionately to the distances in
E, and the second constraint is satisfied.

3.3. Third constraint: remoteness preservation.The first constraint indeed
yielded a lower bound onr , but this bound is not very informative, being much
smaller than the accepted repertoire size. The second constraint was shown to be
an inherent property of the mappingf . It is really the third constraint that is the
interesting one. For the clarity of the presentation, we first focus on a system with
only a single receptor type,r = 1, and then show what happens whenr > 1.
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3.3.1. Single receptor.Let H1 andH2 be two ligands, whose distance inE is
dH1H2. Let g(D1

H1H2
|dH1H2) be the probability that the distance between the two

ligands inF will be D1
H1H2

. How can we calculateg(D1
H1H2
|dH1H2)? Assume an

arbitrary receptorR, whose match withH1 is L1 and whose match withH2 is L2.
For every subsitei we define a function

1hi = δS+1,Ri+(H1)i − δS+1,Ri+(H2)i (9)

such thatD1
H1H2
= |L2− L1| =

∣∣∑N
i=11hi

∣∣.
Assume for the moment thatH1 and H2 differ by a single subsite only, sayi0.

ThenD1
H1H2
= |1hi0|, and1hi0 can take on the values 0 and±1 with the following

probabilities:

• (H1)i0 matchesRi0 and(H2)i0 matchesRi0: impossible,1hi0 = 0 with prob-
ability zero.
• (H1)i0 matchesRi0 and(H2)i0 does not matchRi0: 1hi0 = +1 with proba-

bility 1/S.
• (H1)i0 does not matchRi0 and(H2)i0 does not matchRi0: 1hi0 = 0 with

probability(S− 2)/S.
• (H1)i0 does not matchRi0 and(H2)i0 matchesRi0: 1hi0 = −1 with proba-

bility 1/S.

Now assume thatH1 andH2 differ by exactlydH1H2 = b subsites, and let us ignore
the identical subsites, treatingH1 andH2 as pointwise distinct vectors of lengthb.
Denote byn0 the number of subsites for which1hi = 0, by n+ the number of
subsites for which1hi = +1, and byn− the number of subsites for which1hi =

−1. Obviouslyn0 + n+ + n− = b. The number of possible arrangements of the
triple (n0,n+,n−) is the multinomial(

b

n0,n+,n−

)
≡

b!

n0!n+!n−!
,

and the probability of obtaining each of them is

(S− 2)n0

Sb
.

Therefore, the total probability of obtaining a specific triple(n0,n+,n−) is

(S− 2)n0

Sb

(
b

n0,n+,n−

)
. (10)

A value of D1
H1H2
= 0 can be obtained in various ways. It is possible thatn0 = b

andn+ = n− = 0 (i.e., all theb subsites yield1hi = 0); the probability for this is

(S− 2)b

Sb

(
b

b,0,0

)
.
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Alternatively, it is possible thatn0 = b− 2 andn+ = n− = 1. The probability for
this is

(S− 2)b−2

Sb

(
b

b− 2,1,1

)
.

We can continue in such a manner, and the final result is

g(D1
H1H2
= 0|dH1H2 = b) =

(S− 2)b

Sb

(
b

b,0,0

)

+
(S− 2)b−2

Sb

(
b

b− 2,1,1

)
+
(S− 2)b−4

Sb

(
b

b− 4,2,2

)
+ · · · (11)

Similarly

g(D1
H1H2
= 1|dH1H2 = b)

= 2 ·

[
(S− 2)b−1

Sb

(
b

b− 1,1,0

)
+
(S− 2)b−3

Sb

(
b

b− 3,2,1

)
+ · · ·

]
,

g(D1
H1H2
= 2|dH1H2 = b)

= 2 ·

[
(S− 2)b−2

Sb

(
b

b− 2,2,0

)
+
(S− 2)b−4

Sb

(
b

b− 4,3,1

)
+ · · ·

]
, (12)

(the multiplication by 2 is due to the symmetry of the exchangen+ ↔ n−). Of
course,g(D1

H1H2
> b|dH1H2 = b) = 0. We computed these series using Matlabr,

and the results forN = 10 andS = 8 are presented in Fig.1. The crucial
observation in Fig.1 is that there is a large overlap between the different PFs
g(D1

H1H2
|dH1H2). For example, for any value ofdH1H2 there is a nonnegligible

probability of gettingD1
H1H2

= 0. This is, of course, a violation of our third
constraint—distant ligands (dH1H2 = 10) can have close, or even identical, fin-
gerprints (D1

H1H2
= 0). This result is, of course, expected considering our sole

receptor. It is implausible to expect a single receptor to adequately discriminate
between any two ligands.

For the third constraint to hold we should obtain much smaller overlaps between
the different PFs. In Section3.3.2we show that this can be achieved by increasing
the number of receptor types,r . But before we do that, we need a way to measure
the amount of overlap between the different PFs. Letf1(x) and f2(x) be two PFs
with meansE1 andE2, and variancesV1 andV2. We choose to express their overlap
by the parameterν defined as

ν ≡
σ1+ σ2

|E1− E2|
, (13)

with σ1 =
√

V1, σ2 =
√

V2 the standard deviations off1(x) and f2(x). ν measures
the inverse of the difference between the means in units of the average standard
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Figure 1. The functionsg(D1
H1H2
|dH1H2 = b) for the caseN = 10 andS= 8. The large

overlap between the different functions is clearly observed (a colour version of this figure
can be found athttp://www.wisdom.weizmann.ac.il/~harel/rep.figs).

deviation (up to a factor of 2). It is straightforward that the bigger theν, the larger
the overlap. To use (13) in our case, we must find expressions for the means and
variances of our functionsg(D1

H1H2
|dH1H2). The full derivation of these magnitudes

is shown in AppendixA, and the final result is as follows [see (A2), (A5) and (A7)]:

E1(b)≡ E
(
D1

H1H2
|dH1H2 = b

)
=

1

Sb

b∑
n0=0

(
b

n0

)
(S− 2)n0 R(b− n0) (14)

V1(b)≡ V
(
D1

H1H2
|dH1H2 = b

)
=

2b

S
− [E1(b)]2, (15)

where in (14) R(l ) is a function that obeys the recursive formula

R(l + 2) = 4R(l )+
2

l + 1
R(l + 1); R(0) = 0; R(1) = 2; l ≥ 0.

Substituting (14) and (15) in (13), the overlap between any pair of functions
g(D1

H1H2
|dH1H2 = b) andg(D1

H1H2
|dH1H2 = b′) can be found by,

ν(b,b′) =
σ 1(b)+ σ 1(b′)

|E1(b)− E1(b′)|
,

http://www.wisdom.weizmann.ac.il/~harel/rep.figs


Size of the Olfactory Repertoire 1071

with σ 1
=
√

V1. It is natural to identify the ability of the receptors system to
distinguish between the casesdH1H2 = b and dH1H2 = b′ with ν−1(b,b′). We
therefore define thediscrimination powerof the system, i.e., its ability to determine
whether casedH1H2 = b has occurred, by

µ1(b) ≡ min
b′
ν−1(b,b′) =

1

maxb′ ν(b,b′)
.

The superscript 1 denotes the number of receptors. In our case maxb′ ν(b,b′) =
ν(b,b+ 1), and therefore

µ1(b) =
E1(b+ 1)− E1(b)

σ 1(b+ 1)+ σ 1(b)
. (16)

To better understand the power of this definition, let us introduce the notion of
noise. Let the noise in the olfactory system be represented by an integerq, 0 ≤
q ≤ N, such that the two ligandsH1 andH2 are considered identical ifdH1H2 ≤ q.
In terms of the noise, the system’s discrimination power is considered satisfactory
if µ(q) is large enough. But how much is enough? We take the normal distribution
as a reference. Letf1(x) and f2(x) be two Gaussians with the sameσ and with
|µ1 − µ2| = 2kσ . Then we know thatk of 3–4 yields practical separation of the
two distributions. Therefore, we choosek = 3.5 as a representative value (overlap
between the Gaussians of 0.023267%) so that the threshold value ofµ is

µ =
2kσ

2σ
= k = 3.5.

The third constraint is fulfilled only if theµ of the system exceeds the value
k = 3.5. Just to see how poor the performance of a single receptor is, we calculated
µ1(1) = 0.1897,µ1(2) = 0.1244, andµ1(3) = 0.0916.

3.3.2. Multiple receptors. If we increase the number of receptors,r , the ran-
dom variableDr

H1H2
is given by equation (3) to be a sum of r identical random

variables:

Dr
H1H2
= D1

H1H2
+ D1

H1H2
+ · · · + D1

H1H2
(r times). (17)

Therefore, the PFg(Dr
H1H2
|dH1H2 = b) is the r -times convolution ofg(D1

H1H2
|

dH1H2 = b):

g(Dr
H1H2
|dH1H2 = b)

= g(D1
H1H2
|dH1H2 = b)⊗ · · · ⊗ g(D1

H1H2
|dH1H2 = b) (r times)
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and

Er (b) ≡ E(Dr
H1H2
|dH1H2 = b) = r E1(b),

V r (b) ≡ V(Dr
H1H2
|dH1H2 = b) = rV 1(b).

Now the discrimination power of the system becomes

µr (q) =
√

r · µ1(q). (18)

Clearly, for a large enough repertoirer we can make the discrimination power
as high as we like. It should be pointed out that sinceµ1(q) is a monotonically
decreasing function ofq, a system that discriminates for a noise levelq will surely
do so for any noise levelq′ < q. The smallestr that makesµr (q) ≥ 3.5 for
q = 1,2 and 3 is

r = 341 when q = 1,

r = 792 when q = 2,

r = 1459 when q = 3.

In Figs 2 and 3 we show the PFs of a system with 341 and 792 receptors,
respectively. As expected, Fig.2 shows that the PF fordH1H2 = 1 is well discrimi-
nated for a system of 341 receptors, and Fig.3 shows that the PF fordH1H2 = 2 is
well discriminated for a system of 792 receptors.

What is the ‘appropriate’ value ofq? Given a noise levelq, there will be

q∑
k=1

(
N

k

)
(S− 1)k

ligands which are considered identical to some given ligand. Therefore, our formal
ligand space is constructed of

SN∑q
k=1

(N
k

)
(S− 1)k

(19)

different ligands. ForN = 10 andS = 8, we get a total of 15 000 000 different
ligands whenq = 1, 470 000 different ligands whenq = 2, and 25 000 different
ligands whenq = 3. Comparing to common estimations on the real world, the
truth is probably somewhere betweenq = 2 andq = 3, giving a repertoire size
on the order of 1000. Whenq increases, the ligand space contains fewer distinct
ligands, but their separation becomes harder (r should be increased), since there is
more noise in the system.

This estimation ofq is based on the number of distinct ligands, see equation (19).
We should keep in mind however that ‘ligands’ here are not equivalent to odour
chemicals. Rather, they are related to binding sites. Two different chemicals with
the same binding site are considered, here, identical ligands.
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Figure 2. The PFs of a system of 341 receptors forN = 10 andS = 8 (a colour ver-
sion of this figure can be found athttp://www.wisdom.weizmann.ac.il/~harel/
rep.figs).

200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

D
H

1
H

2

P
ro

ba
bi

lit
y

b=0 

b=1 

b=2 

b=3 
b=4 

b=5 
b=6 

b=7 
b=8 

b=9 

Figure 3. The PFs of a system of 792 receptors forN = 10 andS = 8 (a colour ver-
sion of this figure can be found athttp://www.wisdom.weizmann.ac.il/~harel/
rep.figs).
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Table 1. Calculation of the relevant noise level and repertoire size for different model
parameters.

N S Number of ligands Estimated repertoire
in ligand space size

10 9 54 100 (q = 2) 834–1498
1 800 000 (q = 3)

10 7 168 000 (q = 2) 758
11 8 145 000 (q = 3) 1460
9 8 73 500 (q = 2) 792

4. DISCUSSION

The main result of this paper is a derived estimation that the olfactory system
should contain about 1000 receptor types. This result is consistent with other es-
timates of the size of the olfactory repertoire and with experimental observations.
We want to emphasize, however, that the exact values we have computed, and from
which we derive our estimate (341, 792, and 1459), should not be taken as accurate
predictions, but rather as order of magnitude indicators. The exact values depend
on assumptions regarding the noise level, the threshold discrimination powerk, the
parametersN andS, and the discrete shape space model. We do not really expect
the final results to lead to the exact size of the repertoire, but we do think that the
estimation of 1000 is indeed valid.

Indeed, we claimed that the results are insensitive to the details of the model. For
example, picking a different shape space model will undoubtedly shift the numeri-
cal results, but we believe that the order of magnitude will remain unchanged. No
model will yield a good discrimination power with a single receptor, and since the
expressionµr (q) =

√
r · µ1(q) is valid for any model, there will always be some

r for whichµr (q) will cross the threshold value. If the model used is designed to
fit experimental data [like the one we used, fromLancetet al. (1993)] we expect
its global properties to be similar to ours. To test this hypothesis we repeated the
calculations with different model parameters. The estimations of the repertoire size
indeed remain practically unchanged, as can be seen in Table1.

We close by discussing an intriguing question: the values that we used forN
and S were actually measured inLancetet al. (1993) for general immunological
data, so why are our results not valid for estimating the size of the immunological
repertoire? Why is the immunological repertoire, which is estimated to be of the
order of magnitude 107, much higher than would have been concluded from our
work? We do not know the answer to this, but we can speculate in several ways.
First, the immune system is required for a more complex mission. It must dis-
criminate between self-molecules and external molecules, which may give rise to
even stronger restrictions on the mappingf . Second, the mechanism of stimulus
recognition in the immune system is much more complicated than in the olfactory
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system. It involves several different biological systems that change in time dur-
ing the response. Our simplistic description of the mapping is probably no longer
valid for the immune system. Third, as pointed out by one of the referees of the
paper, the immune system takes decisions at the clonal level, and thus the clones
must be much more specific than odour receptors [see, for example,Borghanset
al. (1999)]. Consequently, the immune repertoire has to be much more diverse
than that of the olfactory system. Finally, there does not seem to be a wall-to-wall
consensus about the value of 107 [see, for example, discussions inCohen(2000),
Arstila et al. (1999), Keşmiret al. (2000)]. Our work may suggest a significantly
lower repertoire size for the immune system.
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APPENDIX A

Let E1(b) = E(D1
H1H2
|dH1H2 = b) and V1(b) = V(D1

H1H2
|dH1H2 = b) be,

respectively, the conditional mean and conditional variance ofD1
H1H2

under the PF
g(D1

H1H2
|dH1H2). Let us consider only theb different subsites ofH1 and H2, and

ignore the identical subsites. Then, in accordance with definition (9), E1(b) is

E1(b) =
∑

all possibleh

[∣∣∣∣∣
b∑

i=0

hi

∣∣∣∣∣ · P(h)
]
,

with P(h) the probability of obtainingh = (h1, h2, . . . , hb). As in Section3.3.1,
let n0 andn± be the number of subsites for which1hi equals 0 and±1, respec-
tively. By this notation

∣∣∣∣∣
b∑

i=0

hi

∣∣∣∣∣ = |n+ − n−| = |b− n0− 2n−|.

P(h) is given by expression (10), so that we obtain

E1(b) =
∑

n0,n−,n+
n0+ n+ + n− = b

(
b

n0,n+,n−

)
(S− 2)n0

Sb
|b− n0− 2n−|,
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or

E1(b) =
1

Sb

b∑
n0=0

(
b

n0

)
(S− 2)n0

b−n0∑
n−=0

(
b− n0

n−

)
|b− n0− 2n−|. (A1)

To further simplify this expression, let us define a new function

R(l ) =
l∑

k=0

(
l

k

)
|l − 2k|,

so that (A1) becomes

E1(b) =
1

Sb

b∑
n0=0

(
b

n0

)
(S− 2)n0 R(b− n0). (A2)

R(l ) can be found by examining, separately, the cases wherel is even or odd.

• For evenl the middle term (k = l/2) always vanishes (l − 2k = 0), and it
suffices to sum only the terms for whichl − 2k is positive, and to multiply
by 2,

R(l )= 2
l/2∑
k=0

(
l

k

)
(l − 2k) = 2l

l/2∑
k=0

(
l

k

)
− 4

l/2∑
k=0

k

(
l

k

)

= 2l

[
2l−1
+

1

2

(
l

l/2

)]
− 4l · 2l−2

= l

(
l

l/2

)
. (A3)

• For odd l the series is symmetric, and it suffices to sum only up tok =
(l − 1)/2 (keepl − 2k positive), and to multiply by 2,

R(l )= 2
(l−1)/2∑

k=0

(
l

k

)
(l − 2k) = 2l

(l−1)/2∑
k=0

(
l

k

)
− 4

(l−1)/2∑
k=0

k

(
l

k

)

= 2l · 2l−1
− 4

[
l · 2l−2

− l

(
l − 2

(l − 1)/2

)]
= (l + 1)

(
l

(l − 1)/2

)
.

(A4)

These two expression are unified if we defineR(l ) in terms of a recursion relation.
Actually, it can be shown thatR(l ) satisfies

R(l + 2) = 4R(l )+
2

l + 1
R(l + 1); R(0) = 0; R(1) = 2; l ≥ 0. (A5)
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The variance is obtained by using the relation

V1(b) = E[(D1
H1H2

)2|dH1H2 = b] − [E1(b)]2.

The first term on the right-hand side can be found in the same fashion asE1(b). In
analogy with (A1)

E[(D1
H1H2

)2|dH1H2 = b] =
1

Sb

b∑
n0=0

(
b

n0

)
(S− 2)n0

b−n0∑
n−=0

(
b− n0

n−

)
(b− n0− 2n−)

2.

Now

l∑
k=0

(
l

k

)
(l − 2k)2 = l 2

l∑
k=0

(
l

k

)
− 4l

l∑
k=0

k

(
l

k

)
+ 4

l∑
k=0

k2

(
l

k

)
= l 2
· 2l
− 4l · l · 2l−1

+ 4 · (l 2
+ l ) · 2l−2

= l · 2l ,

and therefore

E[(D1
H1H2

)2|dH1H2 = b] =
1

Sb

b∑
n0=0

(
b

n0

)
(S− 2)n0(b− n0)2

b−n0

=
b

Sb

b∑
n0=0

(
b

n0

)
(S− 2)n02b−n0 −

1

Sb

b∑
n0=0

n0

(
b

n0

)
(S− 2)n02b−n0. (A6)

The summation in the first term of (A6) is just the binomial expansion ofSb. To
find the second term we use the fact that

f (x) = (x + a)b =
b∑

k=0

(
b

k

)
xkab−k

implies

d

dx
f (x) = b(x + a)b−1

=
1

x

b∑
k=0

k

(
b

k

)
xkab−k.

Therefore, the summation in the second term of (A6) is b(S− 2)Sb−1. All in all,
we have

E[(D1
H1H2

)2|dH1H2 = b] = b

(
1−

S− 2

S

)
=

2b

S
,

and the variance is thus

V1(b) =
2b

S
− [E1(b)]2. (A7)
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