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Estimating the Size of the Olfactory Repertoire
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The concept of shape space, which has been successfully implemented in immuno-
logy, is used here to construct a model for the discrimination power of the olfactory
system. Using reasonable assumptions on the behaviour of the biological system,
we are able to estimate the number of distinct olfactory receptor types. Our es-
timated value of around 1000 receptor types is in good agreement with experi-
mental data.
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1. INTRODUCTION

Biological systems that are to encounter diverse stimuli do not usually develop a
specific receptor for each stimulus type. Rather, they normally adopt a strategy of
building a set of nonspecific receptors. The term ‘nonspecificity’ means that each
receptor type responds, with different affinities, to a variety of stimuli. A stimulus
introduced into the system elicits a typical, characteristic, response pattern, known
as itsspectrumor its fingerprint The number of different receptor types in such
a nonspecific system is referred to as tapertoire size Two typical examples
of such systems are the immune system and the olfactory system. The repertoire
size of the former is apparently on the order of J€ke, for exampleJaneway and
Travers(1997), part 2, Chapter 3], while the repertoire size of the latter is assessed
to be in the range of 300—1000 [see, for exampleri and Yoshiharg1999]".

In this paper we concentrate on estimating the sipéthe olfactory repertoire.

The reasons for being at its current size are not well-understood, and revealing
them is an intriguing puzzleLancetet al. (1993 used a mathematical descrip-
tion of the receptor—ligand interaction and utilized some other measured quantities

TMore accurately, the repertoire size of most mammals is probably around 1000, among which only
about 300 are active receptors in humans.
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1064 L. Carmelet al

to obtain theoretical estimations ofin the range 300—-1000. We use the same
mathematical description for modelling the interactions, but take a totally different
approach to the estimation of We use several simple and intuitive assumptions
to derive an order of magnitude estimationrofaround 1000, well in agreement
with current assessments.

Section2 presents our underlying model. In Secti®mve derive a formula for
the repertoire size of the olfactory system. Sectas devoted to a discussion.

2. THE MODEL

Let us assume that odour molecules, hereinafter the ligands, can be described
as vectors in some metric spaEe and that their fingerprints can be described as
vectors in a different metric spacg, By metric space we mean a space on which
a distance function is defined, so that there is a meaning to terms such as ‘close’
ligands, ‘distant’ ligands, ‘close’ fingerprints and ‘distant’ fingerprints. The metric
of E is assumed to measure how similar ligands are with respect to their binding
affinities to the olfactory receptors. In that sense ‘close’ ligands elicit similar re-
sponses of the sensory system, and ‘distant’ ligands elicit different response of the
sensory system. Whenever we use the terms ‘close’ and ‘distant’ with respect to
ligands, it should be understood with respect to their binding affinities, and one
should keep in mind that ‘identical’ ligands i& do not have to be structurally
identical. The metric of~ is assumed to measure how similar ligands are with
respect to their perception. We used these abstract spaces to estimate the olfactory
repertoire size, by identifying that the interaction between olfactory receptors and
odour molecules is just a mapping between these two splacds — F. Simple
biological requirements imply basic properties of the mapging

(1) Ligand discrimination We require that different ligands will not have the
same fingerprint. Using the notatiéh to denote elements i, we demand

that f (Hy) # f(Hy) wheneverH; # H,.
(2) Proximity preservationSince the perception is determined from the finger-

prints, we require that close ligands are mapped into close fingerprints, or,
more formally, thatvy f (the gradient off with respect toH) is small. In

a sense, this requirement determines the robustness of the system. Biologi-
cal stimuli of the same nature are never expected to produce an identical re-

sponse of the sensory system, but we still expect their fingerprints to be close.
(3) Remoteness preservationThe most tricky observation is that distant

ligands (eliciting different response in the sensory system) must have
distant fingerprints. For if different ligands yield similar fingerprints, the
classification process in the brain may wrongly identify them as being of the
same type.

The last two observations are analogous to saying that there must exist some
sort of correlation between distancesknand in F. Close objects irE must
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be mapped into close objects i and distant objects ik must be mapped into
distant objects irf-.

A realization of such a ‘ligand spac& was first introduced byerelson and
Oster(1979, in the context of immunology theory. They argued that both receptors
and ligands can be described l[dsdimensional vectors in a spaé&which they
dubbed theshape space The underlying logic of such a description is that the
strength of the noncovalent binding between two proteins is determined by the
properties of thébinding sitesof these proteins, and that these properties can be
characterized by a (relatively short) list &f numbers. Each such number, or
coordinate, is customarily calledsabsite and is identified with properties such as
charge, hydrophobicity, and geometric shape. We ideifyith the shape space
throughout the rest of the paper.

Several implementations of the shape space concept have been successfully used
in immunology, especially in the fields of immune networks and cross-reactivity
[(Segel and Perelsph988 Weisbuch 199Q De Boer and Perelspit991 Lancet
et al,, 1993 Weisbuch and Operd 994 Smithet al., 1997 Detourset al.,, 1997,
see also reviews iRerelson and Weisbu¢h997) or Perelson and Wieg€1999)].

In this paper we adopt a popular realization of shape space used in certain vari-
ations by most of these authors. This realization, that we dullidweete shape
space takes both ligands and receptors toNalimensional vectors over a finite
alphabet of sizes, E = {1,2, ..., S}N. Thematch L, between a receptd® =
(R, Ry, ..., Ry) and aligandH = (Hy, Ha, ..., Hy) is just

N

L= Z5s+1,Ri+Hi, 1)

i=1

wheredy y is 1 for x = y and O otherwise. This law is an implementation of

a complementarity principle, which states that each pair of corresponding coor-
dinates of the shape space match if their sum eg8alsl. The numbelL e

[0, N] is a measure of the interaction strength between the receptor and the lig-
and. Using this shape space, and under the assumptions of the iraniettet

al. (1993 demonstrated thdt is proportional to IrK, whereK is the associa-

tion constantor affinity, of the receptor—ligand interaction. rifreceptors interact

with a certain ligand, the fingerprint of this ligand can be represented by-the
tuple (L1, Lo, ..., L), and accordingly we define the ligand fingerprint sp&ce
asF ={0,1,..., N}".

The concept of shape space has been used almost exclusively in immunology
theory. Lancetet al. (1993 claimed that these notions apply also to other non-
specific sets of receptors, including the olfactory system. They assumed a discrete
shape space and used immunological experimental data to determine that the best
fit values ofN andSare 10 and 8, respectively. In the absence of measured values
for olfaction, we adopt the assumptionlaincetet al. (1993 and take these values
to also hold for olfaction.
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Equipped with realizations d& andF, we can now turn to define distance func-
tions on both spaces. Such distance functions can be chosen in various ways. Since
we are only after an order of magnitude estimationrfothe calculations are in-
sensitive to the details of the distance functions.

The natural choice of distance in the shape sgace

N
Ay h, = Z(l — S(Hy)i (H)i )5 2
i=1

which is the number of different subsites ki, and H,. For example, the dis-
tance between the two ligantty = (1,2,2,3,1,1) andH, = (1,2,3,3,1,2) is
dHle = 2.

The natural choice of distance Frspace is thélanhattan distancésee defini-
tion in e.g.,Kohonen(1997)],

r
Dk, = D ILac — Ludl, 3)
k=1

whereL jk is the match between recepty and ligandH;, andr is the total number
of receptors.

3. ESTIMATION OF THE REPERTOIRE SIZE

In the previous section we employed simple biological observations to put three
constraints on the functiofi. We now use these constraints to get lower bounds
on the repertoire size, These bounds will be functions &f and S, and for their
numerical evaluation we use the proposed valud$ ef 10 andS = 8, taken from
Lancetet al. (1993.

3.1. First constraint: ligand discrimination. For this requirement to hold, a
necessary condition is that the number of possible fingerprints should exceed the
number of possible ligands. The overall number of ligands inBrepace isSV,

while the overall number of fingerprints in tifespace ig1+ N)". Therefore, we

must have

(1+N)" > sV,

or
NInS

r~———.
“ In(1+ N)
For N = 10 andS = 8 this yields

(4)

r>o. 5)
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This is indeed a lower bound, but we can do better. Assuming a uniform distri-
bution of the subsites, the probability of two subsites being complementary is just
1/S. Therefore, the probability function (PF) for getting a matchetween an
arbitrary receptor and an arbitrary ligand is simply the binomial, namely

N 1 L 1 N—L
P(L) = = 1-—— . 6
w=()(s) (-9 ©
The most probable matchlisy = [ (N+1)/S] (the notion[.| stands for the closest
integer from below), and the probability of this being the case is denote® by
P(Ly). Forr receptors, the most probable fingerprintLis = (Lo, Lo, ..., Lo)
and its probability isP;. Out of a total ofSN ligands, P} - SN of them will have

the most probable fingerprinit,y. We may thus pose a constraint requiring that on
the average there will be no more than one ligand with that fingerprint,

Py -SV <1,

or
NInS

T o

This inequality is more restrictive than the previous one. In the cas¢ ef 10
andS = 8ityields
r> 22 (8)

This lower bound ensures, in a probabilistic sense, that the fingerprint mechanism
is discriminatory, i.e., that no two ligands have the same fingerprint.

3.2. Second constraint: proximity preservationLet H; and H; be two ligands,
and let their distance ifE be dy,,. Then, for a single receptor their distance
Dﬁle in F is bounded from above byy, 1,, since the response of the receptor to
identical subsites is the same. Similarly, foreceptorsDy, ,,, is bounded by

Dthz S r. dHlHZ'
For this reason, the distancesknare bounded proportionately to the distances in
E, and the second constraint is satisfied.

3.3. Third constraint: remoteness preservationThe first constraint indeed
yielded a lower bound on, but this bound is not very informative, being much
smaller than the accepted repertoire size. The second constraint was shown to be
an inherent property of the mappirfg It is really the third constraint that is the
interesting one. For the clarity of the presentation, we first focus on a system with
only a single receptor type,= 1, and then show what happens whes 1.
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3.3.1. Single receptor.Let H; and H, be two ligands, whose distance his
dh,h,- Let g(Dy ,|dk,1,) be the probability that the distance between the two
ligands inF will be D, ,,. How can we calculatg(D}, ,;,|dw,+,)? Assume an
arbitrary receptoR, whose match wittH; is L; and whose match withl; is L.

For every subsite we define a function

AR = 8s1,R+(H)i — 8S+LR +(Hy) ©)

such thaD}, ,, = [Lo — La| = | 3L, Ahy].

Assume for the moment thad; and H, differ by a single subsite only, say.
ThenDy, , = |Ah;y|, andAh;, can take on the values 0 attd with the following
probabilities:

e (Hy)i, matchesR;, and(Hy);, matchesR,,: impossible Ah;, = 0 with prob-
ability zero.

e (Hyp)i, matchesR,, and(Hy);, does not matchr,;: Ah;, = +1 with proba-
bility 1/S.

e (Hy)i, does not matclR;, and (H,);, does not matclR;;: Ah;, = 0 with
probability (S— 2)/S.

e (Hy)i, does not matchir, and(H,);, matchesR;,: Ah;, = —1 with proba-
bility 1/S.

Now assume thatl; andH, differ by exactlydy, 4, = b subsites, and let us ignore
the identical subsites, treatindy andH, as pointwise distinct vectors of lengbh
Denote byng the number of subsites for whichh; = 0, by n, the number of
subsites for whiclAh; = 41, and byn_ the number of subsites for whickh; =

—1. Obviouslyng 4+ n. 4+ n_ = b. The number of possible arrangements of the
triple (ng, N, N_) is the multinomial

b _ bl
No, Ny, N_/  nong!n_!’

and the probability of obtaining each of them is

(S—2™
—

Therefore, the total probability of obtaining a specific triphg, n, n_) is

(S—2) b
S (no, Ny, n_)' (10)

A value of D}, ,;, = 0 can be obtained in various ways. It is possible tiat b
andn, = n_ =0 (i.e., all theb subsites yield\h; = 0); the probability for this is

(S—Z)b( b >
Sy b,0,0/




Size of the Olfactory Repertoire 1069

Alternatively, it is possible thatg = b — 2 andn, = n_ = 1. The probability for

this is
(S—2)p-2 b
S b—211)

We can continue in such a manner, and the final result is

S—2)p b
Q(Dﬁle = OICIHlHZ = b) = !( )

s \b,00
(S—2)P2 b (S— 24 b
Ty <b—2,1,1>+ S (b—4,2,2>+"' (11)

Similarly

g(D#le - l|dH1H2 - b)

., [(s=2"1 b (S—2)"3 b
[0 ) )]

g(D#le = 2|dH1H2 = b)

_ (S— Z)b_2 b (S— 2)b—4 b
=2. [T(b—Z,Z,O) +T<b—4,3, 1) +...]’(12)

(the multiplication by 2 is due to the symmetry of the exchange< n_). Of
course,g(Dﬁle > bldy,n, = b) = 0. We computed these series using Matfap

and the results foN = 10 andS = 8 are presented in Fidl. The crucial
observation in Fig.1 is that there is a large overlap between the different PFs
g(Dﬁ1H2|dHlH2). For example, for any value afy, 4, there is a nonnegligible
probability of getting Dﬁle = 0. This is, of course, a violation of our third
constraint—distant ligandslg, 1, = 10) can have close, or even identical, fin-
gerprints Dﬁle = 0). This result is, of course, expected considering our sole
receptor. It is implausible to expect a single receptor to adequately discriminate
between any two ligands.

For the third constraint to hold we should obtain much smaller overlaps between
the different PFs. In Sectia®3.2we show that this can be achieved by increasing
the number of receptor types, But before we do that, we need a way to measure
the amount of overlap between the different PFs. t;€k) and fo(x) be two PFs
with meansE; andE,, and variance¥; andV,. We choose to express their overlap
by the parameter defined as

o1+ 02

_ 13
|E1 — B2l (13)

V=

with o1 = / V1, 0o = +/Vs the standard deviations df(x) and fo(x). v measures
the inverse of the difference between the means in units of the average standard
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Figure 1. The functiong(DﬁlH |dH, H, = b) for the caseN = 10 andS = 8. The large
overlap between the different functions is clearly observed (a colour version of this figure
can be found atittp://www.wisdom.weizmann.ac.il/ harel/rep.figs).

deviation (up to a factor of 2). It is straightforward that the biggenthne larger

the overlap. To us€l@) in our case, we must find expressions for the means and
variances of our functiong( DY, ,,, |dw,1,). The full derivation of these magnitudes

is shown in Appendid, and the final result is as follows [see (A2), (A5) and (A7)]:

1 & (b ;
E'(0) = E (Dpyyp, [drsr, = b) = 5 % (n0)<8— 2™R(b-no) (14)

2b
Vl(b) =V (D]H1H2|dH1H2 = b) = g - [El(b)]zs (15)
where in (4) R() is a function that obeys the recursive formula
2
R( +2) =4R(l) + I+_1R(I +1); RO =0, R =2 1|=>0.

Substituting 14) and @5) in (13), the overlap between any pair of functions
9(D}, ,1AH, 1, = b) andg(Dy ,|dw, 1, = b') can be found by,

ol(b) + ot(b)

V0.0 = e TR
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with o1 = +/VI. It is natural to identify the ability of the receptors system to
distinguish between the casdg,n, = b anddy, 4, = b’ with v i(b, b). We
therefore define thdiscrimination powenf the system, i.e., its ability to determine
whether caseéy,n, = b has occurred, by

1

Lb) = minvi(b.b) = ———— .
u-(b) = minv==(b, b) mave v(b. b)

The superscript 1 denotes the number of receptors. In our casguti@abd’) =
v(b, b + 1), and therefore

Elb+1) — EXb)
1 _
WO = o D 1ol

(16)

To better understand the power of this definition, let us introduce the notion of
noise Let the noise in the olfactory system be represented by an intederK

g < N, such that the two ligandd; andH, are considered identical iy, 1, < Q.

In terms of the noise, the system’s discrimination power is considered satisfactory
if 1(q) is large enough. But how much is enough? We take the normal distribution
as a reference. Let;(x) and fo(x) be two Gaussians with the sameand with

w1 — u2| = 2ko. Then we know thak of 3—4 yields practical separation of the
two distributions. Therefore, we chooke= 3.5 as a representative value (overlap
between the Gaussians of 0.023267%) so that the threshold valuis of

2k
p=5=2 =k=35
20

The third constraint is fulfilled only if thg: of the system exceeds the value
k = 3.5. Just to see how poor the performance of a single receptor is, we calculated
ut(1) = 0.1897,11(2) = 0.1244, andu'(3) = 0.0916.

3.3.2. Multiple receptors. If we increase the number of receptarsthe ran-
dom variableDy, ,,, is given by equationd) to be a sum of r identical random
variables:

Diyn, = Dfiym, + Digm, + -+ Diyp, (1 times) (17)

Therefore, the PR(D}y ,,|dn, 1, = b) is ther-times convolution ofg(D{, ,,,|
dpyH, = b):

g(DLlH2|dH1H2 - b)

= 9(D{y p,ldr, =) ® -+ ® gD}y Idiy i, =) (r times)
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and
E' (b) = E(Djy,,|dmym, = b) =TE*(b),
V'(b) = V(D} , 0,1, = b) = rVi(b).
Now the discrimination power of the system becomes
w@ =Vr . (18)

Clearly, for a large enough repertoirewe can make the discrimination power
as high as we like. It should be pointed out that sipééqg) is a monotonically
decreasing function af, a system that discriminates for a noise lay&lill surely
do so for any noise leval’ < g. The smallest that makesu'(q) > 3.5 for
g=12and3is

r=341 when q=1,
r =792 when q =2,
r =1459 when q = 3.

In Figs 2 and 3 we show the PFs of a system with 341 and 792 receptors,
respectively. As expected, Figshows that the PF faty,n, = 1 is well discrimi-
nated for a system of 341 receptors, and Bighows that the PF fady, 4, = 2 is
well discriminated for a system of 792 receptors.

What is the ‘appropriate’ value of? Given a noise leve, there will be

q
N

> (k) (S— 1)k

k=1

ligands which are considered identical to some given ligand. Therefore, our formal

ligand space is constructed of

SN
E:l (’:)(S — Dk

different ligands. FoN = 10 andS = 8, we get a total of 15000 000 different
ligands wherg = 1, 470000 different ligands when= 2, and 25000 different
ligands whermg = 3. Comparing to common estimations on the real world, the
truth is probably somewhere betwegn= 2 andg = 3, giving a repertoire size
on the order of 1000. Wheq increases, the ligand space contains fewer distinct
ligands, but their separation becomes hardeshpuld be increased), since there is
more noise in the system.

This estimation of] is based on the number of distinct ligands, see equati@n (
We should keep in mind however that ‘ligands’ here are not equivalent to odour
chemicals. Rather, they are related to binding sites. Two different chemicals with
the same binding site are considered, here, identical ligands.

(19)
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Figure 2. The PFs of a system of 341 receptorsNoe 10 andS = 8 (a colour ver-
sion of this figure can be found atttp://www.wisdom.weizmann.ac.il/ harel/

rep.figs).
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Figure 3. The PFs of a system of 792 receptorsNoe= 10 andS = 8 (a colour ver-
sion of this figure can be found atttp://www.wisdom.weizmann.ac.il/ harel/

rep.figs).
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Table 1. Calculation of the relevant noise level and repertoire size for different model

parameters.
N S Numberof ligands Estimated repertoire
in ligand space size
10 9 54100¢ = 2) 834-1498
1800000 ¢ = 3)
10 7 168000q = 2) 758
11 8 145000¢ = 3) 1460
9 8 735004 = 2) 792

4. DISCUSSION

The main result of this paper is a derived estimation that the olfactory system
should contain about 1000 receptor types. This result is consistent with other es-
timates of the size of the olfactory repertoire and with experimental observations.
We want to emphasize, however, that the exact values we have computed, and from
which we derive our estimate (341, 792, and 1459), should not be taken as accurate
predictions, but rather as order of magnitude indicators. The exact values depend
on assumptions regarding the noise level, the threshold discrimination gpther
parameterdN andS, and the discrete shape space model. We do not really expect
the final results to lead to the exact size of the repertoire, but we do think that the
estimation of 1000 is indeed valid.

Indeed, we claimed that the results are insensitive to the details of the model. For
example, picking a different shape space model will undoubtedly shift the numeri-
cal results, but we believe that the order of magnitude will remain unchanged. No
model will yield a good discrimination power with a single receptor, and since the
expression” (q) = /1 - n*(q) is valid for any model, there will always be some
r for which ' () will cross the threshold value. If the model used is designed to
fit experimental data [like the one we used, frimncetet al. (1993] we expect
its global properties to be similar to ours. To test this hypothesis we repeated the
calculations with different model parameters. The estimations of the repertoire size
indeed remain practically unchanged, as can be seen in Table

We close by discussing an intriguing question: the values that we used for
and S were actually measured lrancetet al. (1993 for general immunological
data, so why are our results not valid for estimating the size of the immunological
repertoire? Why is the immunological repertoire, which is estimated to be of the
order of magnitude 10 much higher than would have been concluded from our
work? We do not know the answer to this, but we can speculate in several ways.
First, the immune system is required for a more complex mission. It must dis-
criminate between self-molecules and external molecules, which may give rise to
even stronger restrictions on the mappihgSecond, the mechanism of stimulus
recognition in the immune system is much more complicated than in the olfactory
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system. It involves several different biological systems that change in time dur-
ing the response. Our simplistic description of the mapping is probably no longer
valid for the immune system. Third, as pointed out by one of the referees of the
paper, the immune system takes decisions at the clonal level, and thus the clones
must be much more specific than odour receptors [see, for exaBmighanset

al. (1999]. Consequently, the immune repertoire has to be much more diverse
than that of the olfactory system. Finally, there does not seem to be a wall-to-wall
consensus about the value of I8ee, for example, discussions@ohen(2000),

Arstila et al. (1999, Kesmiret al. (2000]. Our work may suggest a significantly
lower repertoire size for the immune system.
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APPENDIX A

Let EY(b) = E(Dj,p,dn,1, = b) andV*i(b) = V(D} y,|du,4, = b) be,
respectively, the conditional mean and conditional variandb,l_m|2 under the PF
g(Dﬁ1H2|dHlH2). Let us consider only thb different subsites oH; and H,, and
ignore the identical subsites. Then, in accordance with definifipret (b) is

: P(h)} ;

with P(h) the probability of obtainindn = (hy, h, ..., hy). As in Section3.3.],
let ng andn.. be the number of subsites for whicth; equals 0 andt1, respec-
tively. By this notation

b

>h

i=0

HOEY {

all possibleh

b
Zhi| =|n.—n_|=[b—ng—2n_|.

i=0

P (h) is given by expressiori(), so that we obtain

b (S—2)M
El(b) = = = b—ng—2n_
(b) > (no’n+’n) 5 fb—no—2n|,
No, N_, Ng
No+ny+n_=Db
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or
l b b b—no b no
1 _ _ No - _ _
E*(b) = > nOE_O <no>(S 2) n_E_()( 0 >|b No—2n_|. (A1)

To further simplify this expression, let us define a new function

R =)" <:<)" — 2|,

k=0
so that A1) becomes
1 & (b
El(b) = 5 miz:o (no) (S—2)™R(b — ny). (A2)

R(l) can be found by examining, separately, the cases wWhismven or odd.

e For evenl the middle termK = 1/2) always vanished (- 2k = 0), and it
suffices to sum only the terms for whith- 2k is positive, and to multiply
by 2,

1/2 1/2 1/2

R() :22:: (:()(I —2k) =2l 2:: <|I<) —42:)((:()

) el

e For oddl the series is symmetric, and it suffices to sum only ujx te-
(I — 1)/2 (keepl — 2k positive), and to multiply by 2,

(1-1)/2

1-v2 b2 |
R()=2 g (k)(l 2k) = 2| kX_; (k> 4 kZ_;) k(k)
=2|-2'—1—4[|-2'—2—|( -2 )}:(IH)( ! )
(I-1/2 (I-1/2
(A4)

These two expression are unified if we defR¢) in terms of a recursion relation.
Actually, it can be shown thaR(l) satisfies

R( +2) = 4R() + IJrilR(l +1):; RO =0, R1)=2 |>0. (A5)
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The variance is obtained by using the relation
V*(b) = E[(D}, 4,)*|dm, 1, = b] — [E* (D).

The first term on the right-hand side can be found in the same fashiéh(bs In
analogy with A1)

b b—ng

1 b no b— No
E[(Diyp) Ay, = bl = 5 D (no>(8—2> > ( . )(b— no —2n_)%

no=0 n_=0

Now

> (L)(I —2k)2 = |2k2=; (L) — 4 §k<:<) +4§k2<:(>

k=0

=12.2 -4 1.2 4.2+ 22=1.2,
and therefore

1 /b ~
E[(Dpyp) I, = bl = 5 ijo (n0)<8— 2)" (b — ng)2°~"

b

b b b No ab—ng 1 b Ngob—ng
=3 Z <n0>(8— 2)Mob=No _ 5 Z n0<no)(s— 2)M020=N0  (AB)

no=0 no=0
The summation in the first term oAg) is just the binomial expansion &. To
find the second term we use the fact that

b

foo=x+a=>Y" (i)xkab"‘

k=0

implies
d _ b1 _ L = (b k ,b—k
&f(x)_b(x+a) _;kzzok(k>x a’™~.

Therefore, the summation in the second termA®)(is b(S — 2)S~1. All in all,

we have
1 2 S-2
E[(Dy,p,) 1dHm, = bl =Db | 1 - < )=%
and the variance is thus

Vi) = 2—;’ — [EXD)]2. (A7)
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