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Abstract. We present an algorithm for drawing directed graphs, which is based
on rapidly solving a unique one-dimensional optimization problem for each of
the axes. The algorithm results in a clear description of the hierarchy structure
of the graph. Nodes are not restricted to lie on fixed horizontal layers, resulting
in layouts that convey the symmetries of the graph very naturally. The algorithm
can be applied without change to cyclic or acyclic digraphs, and even to graphs
containing both directed and undirected edges. We also derive a hierarchy index
from the input digraph, which quantitatively measures its amount of hierarchy.

1 Introduction

Visualizing digraphs is a challenging task, requiring algorithms that faithfully represent
the relative similarities of the nodes, and give some sense of the overall directionality.
The latter requirement renders algorithms designed for undirected graphs inappropri-
ate for digraphs. Consequently, algorithms for digraph drawing usually adopt different
strategies from their undirected counterparts. The dominant strategy, rooted in the work
of Sugiyama et. al. [11], is based on separating the axes, where the y-axis represents
the directional information, or hierarchy, and the x-axis allows for additional aesthetic
considerations, such as shortening edge lengths or minimizing the number of edge cross-
ings. In these algorithms, the y-coordinates are computed by dividing the y-axis into a
finite number of layers and associating each node with exactly one layer — a process
called layering. Edges are allowed only between consecutive layers, and they all point in
the same direction. To make this feasible, dummy nodes are sometimes inserted. When
dealing with cyclic digraphs, no layout can place all edges in the same direction, and
what is traditionally done in this case is to apply a preliminary stage, in which a minimal
number of edges is sought, whose reversal will make the digraph acyclic. This is actually
an NP-hard problem.

Assigning the x-coordinates is normally done in two stages. The first determines the
order of the nodes within each layer, in an iterative process called ordering. In a single
iteration, the order of the nodes in all layers but one is fixed, and the order of the mobile
nodes is determined, so as to minimize the number of edge crossings. This too is an
NP-hard problem. The second stage determines the exact locations of the nodes along
the x-axis, taking into account various parameters, such as the finite size of the nodes
and the smoothness of the edges. For more details see [2,6].
� For a full version see [1]
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Such digraph drawing algorithms have evolved to produce nice and useful layouts for
many different types of digraphs. Nevertheless, we would like to point out two inherent
properties of the standard strategy, which, despite being treated in various ways by the
many algorithms, are in many cases still undesirable:

– Finding a layering for cyclic digraphs requires transforming them into acyclic ones,
thus introducing a certain distortion of the original problem.

– The layering is strict, in the sense that the y-axis is quantized into a finite number
of layers. This constraint may sometimes be advisable for acyclic digraphs, but we
show that allowing for more flexibility turns out to be advantageous to the drawing.

In this paper we present a new algorithm for digraph drawing. It embraces the idea of
axis separation, but uses novel approaches to the drawing of both axes. These approaches,
apart from the fact that they produce nice drawings and have fast implementations, also
successfully deal with the two aforementioned points — the distortion and the discrete
layering.

Weassociatewith the nodes continuousy-coordinates, in away that suggests a natural
unified framework that can be applied to any kind of digraph, whether cyclic or acyclic,
and which requires no graph modification or preprocessing. In particular, dummy nodes
are not required, and cyclic digraphs do not have to go through the process of edge
inversion. For some digraphs, the continuous layering produces the usual quantization
of the y-axis. But, for many other digraphs the quantization is broken, in order to better
represent the hierarchy.

We define the vector of y-coordinates as the unique minimizer of a simple energy
function, and show that the minimization problem is equivalent to a system of linear
equations. The simple form of the energy function enables rigorous analysis, giving rise
to many interesting results, the most important of which appears to be the definition of
an index for measuring the amount of hierarchy in a digraph. As to the x-coordinates,
they are assigned using the minimizer of another energy function that is suitable for the
one-dimensional case.

By definition, a force is the inverse gradient of the energy. Thus, the strategy of energy
minimization is equivalent to a force directed model. Therefore, had we been asked to
categorize our algorithm, we would have said that it is purely energy minimization
oriented, as all of its parts use energy minimization procedures, each part with its own
specially tailored energy function. Force directed models are much more popular in
undirected graph drawing than in digraph drawing. We are aware of only one other
occasion where a force directed model was suggested for digraph drawing, [10], forcing
directionality by applying a homogeneous magnetic field and favoring edges that are
parallel to its field lines. Yet, we are under the impression that the inferred energy
function is complicated, rich in local minima, and rather difficult to minimize.

2 The Algorithm

A digraph is usually written G(V,E), where V = {1, . . . , n} is a set of n nodes and
E ⊆ V ×V is a set of directed edges, (i, j) being the edge pointing from node i to node
j. Each edge is associated with two magnitudes: (1) symmetric weights,wij = wji, and
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(2) target height differences, which express the relative hierarchy of nodes i and j by
the number δij , measuring their desired height difference along the y-axis. Thus, in the
drawing we would like to place nodes i and j such that yi−yj = δij = −δji. A digraph
with δij = 0 for every (i, j) ∈ E is really an undirected graph. A digraph is called
unweighted if for every edge (i, j), δij = wij = 1. Henceforth, we assume wij = 0 for
any non-adjacent pair of nodes.

By the conventional definition, the Laplacian is the symmetric n× n matrix

Lij =
{∑n

k=1 wik i = j
−wij i �= j

i, j = 1, . . . , n.

For later use, we introduce another important magnitude associated with a digraph:

Definition 1. Let G(V,E) be a digraph. The balance of node i is

bi
def=

n∑
j=1

wijδij .

The balance of G is the vector b = (b1, . . . , bn)T . A node whose balance is zero will be
called a balanced node.

The balance of i measures the difference between how much i pushes away other
nodes (those nodes j for which δij > 0), and how much it is pushed away from them.

2.1 Assigning the y-Coordinates

Here is our energy function:

Definition 2. Let G(V,E) be a digraph, and let y = (y1, . . . , yn)T be any vector of
coordinates. The hierarchy energy is

EH(G, y) =
1
2

n∑
i,j=1

wij(yi − yj − δij)2 =
∑

(i,j)∈E
wij(yi − yj − δij)2. (1)

Clearly, EH ≥ 0 for any digraph and any vector of coordinates. We define an op-
timal arrangement of a digraph, y	, as a minimizer of the hierarchy energy, y	 =
arg miny EH(G, y). An optimal arrangement will try to place the nodes such that the
height difference yi − yj for any adjacent pair will be close to δij . The weight wij
indicates how ‘important’ it is that (yi − yj − δij)2 be small. The larger this quantity,
the smaller (yi − yj − δij)2 should be, in order to keep the contribution to the energy
small.

Using the previously defined notions of Laplacian and balance, the hierarchy en-
ergy can be written in the compact form EH = E0 + yTLy − 2yT b, where E0 =
1
2

∑n
i,j=1 wijδ

2
ij . For a proof see the full version of this paper [1]. Differentiating this

simple form, we find an explicit formula for an optimal arrangement. As the next result
shows, y	 is the solution of a system of linear equations.

Proposition 1. LetG(V,E) be a digraph, with Laplacian L and balance b. An optimal
arrangement y	 is a solution of Ly = b.



196 Liran Carmel, David Harel, and Yehuda Koren

The proof appears in [1], where we also show that the system Ly = b is compatible
with an infinite number of solutions that differ from each other only by a translation.
The uniqueness (up to a translation) suggests that y	 carries some essential information,
as we show in Section 3.

We are now in a position to define the optimal arrangement in a completely unique
fashion. We require that the center of mass of the optimal arrangement is at the origin
of coordinates, i.e.,

∑
i y
	
i = 0. This choice of y	 enables its fast computation using the

Conjugate Gradient method, see [1]. Therefore:

Definition 3. Let G(V,E) be a digraph with Laplacian L and balance b. Its optimal
arrangement, y	, is the solution of Ly = b, subject to the constraint

∑
i yi = 0.

Let us see how this algorithm works by applying it to some very small-scale exam-
ples. More examples appear in later sections. Figure 1(a) shows an unweighted acyclic
digraph. Its optimal arrangement is the solution of the system

(
2 −1 −1
−1 1 0
−1 0 1

)
y	 =

(
2
−1
−1

)
=⇒ y	 =

(
2/3
−1/3
−1/3

)
,

under the constraint
∑
i y
	
i = 0. This is just the expected two-layer solution. The height

difference between the layers is 1, thus δij = yi − yj , ∀(i, j) ∈ E, giving EH(y	) = 0.
Figure 1(b) shows another example of an unweighted acyclic digraph. In this case,

(
2 −1 −1
−1 2 −1
−1 −1 2

)
y	 =

(
2
0
−2

)
=⇒ y	 =

(
2/3

0
−2/3

)
.

Aesthetically, this vector of coordinates nicely captures the structure of the digraph,
where, in contrast to the first example, nodes 2 and 3 can no longer have the same
y-coordinate since they push each other in opposite directions. The result reflects a
compromise of sorts, pushing node 2 upwards and node 3 downwards, thus decreasing
the height difference y1 − y2 to 2

3 and increasing y1 − y3 to 4
3 . The height differences

cannot achieve their targets, resulting in a strictly positive hierarchy energy EH(y	) =
( 2

3 − 1)2 + ( 2
3 − 1)2 + ( 4

3 − 1)2 = 1
3 .

�

�� � �

�

(a) (b)

Fig. 1. Two very small examples of unweighted acyclic digraphs.
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Figure 2(a) shows an example of an unweighted cyclic digraph. In this case,


2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3


 y	 =




0
1
0
−1


 =⇒ y	 =




0
1/4

0
−1/4


 ,

which is schematically plotted in Fig. 2(b). Here we see the naturalness of the way
our algorithm deals with cyclic digraphs. The result is aesthetically convincing, putting
node 2, whose balance is the largest, at the top, and node 4, whose balance is the
smallest, at the bottom. As is always the case with cyclic digraphs, the height differences
cannot all achieve their targets, resulting in strictly positive hierarchy energy. Indeed,
EH(y	) = 4 · ( 1

4 − 1)2 + ( 1
2 − 1)2 = 2.5.

�

� �

�

�

�
�

�
�

�

� �

�

(a) (b)

Fig. 2. (a) A small example of an unweighted cyclic digraph; (b) its optimal arrangement.

The idea of using energy minimization to determine a vector of coordinates on one
axis was already exploited in undirected graph drawing by Tutte [12] and Hall [5], both
utilizing the same quadratic energy function,ETH = 1

2

∑n
i,j=1 wij(yi− yj)2 = yTLy.

Comparing this energywith the hierarchy energy (1), it is clear that they become identical
for a digraph with δij = 0, ∀(i, j) ∈ E, which is really an undirected graph.

It is instructive to adopt a different viewpoint in explaining a fundamental difference
between the minimizer ofETH , and the optimal arrangement y	. The former is obtained
from the equation ∂ETH/∂yi = 0 which gives

yi =

∑n
j=1 wijyj∑n
j=1 wij

. (2)

This equation tells us to put node i in the barycenter of its neighbors. Clearly, the zero
vector is a solution of (2), a situation that both Tutte and Hall avoid by using various
constraints. In analogy, y	 satisfies the following important property

y	i =

∑n
j=1 wij(y

	
j + δij)∑n

j=1 wij
,



198 Liran Carmel, David Harel, and Yehuda Koren

which is substantially different from (2). Here we take a ‘balanced’ weighted average
instead of the barycenter. The introduction of nonzero δij’s prevents the collapse of all
the nodes to the same location, yielding a meaningful solution.

2.2 Assigning the x-Coordinates

In principle, we would like to use a classical force directed model for the x-axis. Di-
rectional information should not be considered any longer, since it is assumed to be
exhaustively taken care of by the y-axis. However, when trying to modify the customary
two-dimensional gradient descent optimization algorithm, for use inour one-dimensional
case, convergence was rarely achieved. The reason for this is what we call the ‘swap-
ping problem’. Recall that the y-coordinates of the nodes are already fixed, and now
the nodes are allowed to move only along the x-axis. However, if two nodes have close
y-coordinates, swapping places along the x-axis is almost always impossible, even if it
is energetically favorable, due to the repulsive forces that form an “energy barrier”; see
[1] for a demonstration of this.

It would be the best, then, to employ an alternative optimization technique for our
one-dimensional case, which skirts the swapping problem We suggest to find a vector
x = (x1, . . . , xn)T representing the x-coordinates of the nodes in a way that minimizes
edge (squared) lengths. This enables us to use simple energy functions that can be
minimized by powerful global techniques. Besides the aesthetical reasoning, minimizing
edge lengths is known to reduce edge crossings. We present two alternative variants of
the method:

– Minimizing edge-squared lengths: This means minimizing the already familiar
Tutte-Hall energy function, ETH = 1

2

∑n
i,j=1 wij(xi − xj)2 = xTLx. As sug-

gested by Hall [5,7], the non-trivial minimizer of this energy function is the Fiedler
vector, which is the eigenvector of the Laplacian associated with the smallest posi-
tive eigenvalue. We find the minimizer of ETH using ACE [8] — an extremely fast
multiscale algorithm for undirected graph drawing.

– Minimizing edge lengths: This is the well known problem of minimum linear
arrangement [3]. The solution is obtained byminimizing the energy functionELA =
1
2

∑n
i,j=1 wij |xi − xj |, where (x1, . . . , xn) is a permutation of (1, . . . , n). This is

an NP-hard problem, and hence we should work with heuristics. In practice, we
find a local minimizer ofELA using another fast multiscale algorithm [9], designed
especially for this problem.

In some of the cases we have studied (most notably, trees), the Fiedler vector was inferior
with respect to the final result. The reason for this is that nothing in the Tutte-Hall energy
function prevents two nodes fromhaving the samex-coordinate. Therefore, locally dense
regions could verywell appear. In contrast, theminimum linear arrangement incorporates
some kind of ‘repulsive force’, by not letting two nodes have the same x-coordinate. For
example, see Fig. 4(a,b). However the Fiedler vector has advantages that make it very
attractive in some cases. First, it is guaranteed to be an optimal global minimizer, and
second, it can be computed extremely rapidly; see Table 1. In practice, for many graphs
the Fiedler vector yields better results (see Section 4).
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Final beautification. So far, we have found the vector x using a very simple energy
function and have ignored the information about the y-coordinates. As a result, there
are cases where local smoothing can improve the drawing; see for example Fig. 4(c).
We do this using a richer one-dimensional force directed model, which incorporates the
information about the y-coordinates in order to refine the x-coordinates. Specifically,
we have chosen to work with the Fruchterman-Reingold model [4]. In practice we do
not use forces, but rather the energy they induce. This results in a modified optimization
process, more suitable for the one-dimensional case; see [1].

3 Further Implications of the y-Axis Arrangement

Regular Digraphs A regular graph is one in which all nodes have the same degree. In
analogy, a regular digraph is one in which all nodes have the same in-degree and the
same out-degree. A regular digraph exhibits a high level of symmetry, so that we do
not expect to find much hierarchy in it. It can be proved that in a regular digraph each
node is balanced, having equal in-degree and out-degree. The optimal arrangement for
a regular digraph is the solution of Ly	 = 0; hence y	 = (0, . . . , 0)T . In other words, a
regular digraph is a hierarchy-free digraph. A simple example is a directed cycle.

Symmetric Nodes A regular digraph is hierarchy-free. Thus, when the nodes are all
symmetric, they are all assigned the same y-coordinate. Interestingly, this observation
can be extended. Actually, if two nodes are symmetric, they have the same y-coordinate.
In the framework of undirected graphs, it is customary to denote two nodes i and j as
symmetric if there exists a permutation π such that π(i) = j and π(j) = i, and the
Laplacian is invariant under π, L = Lπ . Here, Lπ is the Laplacian whose rows and
columns are permuted according to π. For digraphs, we impose symmetry also on the
directionality by adding the requirement that b = bπ . This definition reduces to the
standard one for undirected graphs, since in this case b is the zero vector. We expect
symmetric nodes to have the same level of hierarchy, which is indeed the case. In [1],
using the uniqueness of the optimal arrangement, we prove that if i and j are symmetric,
then y	i = y	j .

Hierarchy Index The y-axis in our drawings contains the entire available information
about the hierarchy. We claim that the spread of the projection of the drawing on this axis
is closely related to its inherent hierarchy. Two extreme examples are: (1) A directed
cycle, in which no node is different from the other, and we do not expect to see any
hierarchy at all. Indeed, it is the case, since the cycle is regular. (2) A (k + 1)-path
has a maximal amount of hierarchy, each node having a different y-coordinate in unit
increments, y	 = (−k/2,−k/2 + 1, . . . , k/2)T .

It would be natural, therefore, to associate the hierarchy of a digraph with the mag-
nitude∆y	 = y	max− y	min. The larger the∆y	, the more hierarchical the digraph. One
can use this magnitude to measure how worthwhile it is to allot the y-axis to exhibit the
directional information. In order to do so,∆y	 should be compared with a measure of the
dimension of the graph, had it been drawn using undirected graph drawing algorithms.
A plausible candidate for measuring this is the diameter D of the digraph, which is the
graph theoretic distance between the two most distant nodes. Therefore:
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Definition 4. The hierarchy index of an unweighted digraph is

H =
∆y	

D
=
y	max − y	min

D
,

where y	 is its optimal arrangement and D is its diameter.

If∆y	 is comparable toD, the directional information is significant and one should
use digraph drawing algorithms. If, on the other hand, ∆y	 is small with respect to D,
then it is no longer ‘profitable’ to dedicate an entire axis for the directional information,
and undirected graph drawing algorithms should be preferred. Regular digraphs are an
extreme case of the latter scenario.Here∆y	 = 0, and henceH = 0. The dual example is
a k-path, where∆y	 = D = k−1, implyingH = 1 independent of k. Another example
is that of a complete n-node binary tree. Here,D = 2 logn, while∆y	 = logn. Hence,
H = 1

2 , independently of n. This 1:2 ratio is well visualized when comparing the height
of a hierarchical tree drawing with that of a radial drawing generated by undirected force
models; see [1].

Cyclic Digraphs Standard layering algorithms can be applied only to acyclic digraphs.
When dealing with cyclic digraphs they are first transformed into acyclic ones by invert-
ing the direction of a minimal number of edges [2,6]. (Although, in cases where a special
root node is known in advance, better strategies are possible.) Our algorithm allows to
directly draw cyclic digraphs without having to invert edge directions. We believe this
to be one of its most significant advantages.

To make this claim stronger, we now show why it seems that there is no simple
connection between the number of edges whose direction should be reversed and the
inherent hierarchy of the digraph. As an example, in a directed cycle it suffices to invert
the direction of a single edge in order to make it acyclic. Thus, the graph will be drawn by
standard layering algorithms as a full-hierarchy path, having the lowest and the highest
nodes connected by a reversed edge; see Figure 3. Obviously, this misrepresents the
structure of the hierarchy-free cycle. Applying our algorithm to a directed cycle shows
that it contains no directionality, being a regular digraph. In the absence of hierarchy,
there is no sense in forcing the edges to be all laid out in the same direction.

�

�

�

�

�

Fig. 3. Schematic layering of 5-points circle.
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Another example is shown in Fig. 5(a). Here, the digraph does contain hierarchy,
and the figure shows its optimal arrangement as dictated by our algorithm. We believe
that we can quite objectively claim that this drawing best represents the structure of the
digraph, despite of the fact that only about half of the edges point downward, and the
rest point upward. This is because the only explicit hierarchy in this digraph, which is
well captured in the figure, is between the highest node and the lowest one. None of the
other nodes possess evident hierarchical relations, thus some of the edges connecting
them are ‘allowed’ to go upward.

4 Examples

We have tested our algorithm against several unweighted digraphs with diverse struc-
tures. Figure 4 shows a complete 5-level binary tree. The y-coordinates were naturally
quantized into 6 layers, as dictated by the tree structure. Recall that assigning the x-
coordinates can be done in two different ways and that there is also a possibility for an
additional final beautification. Figure 4(a) shows the drawing obtained when using the
Fiedler vector. The result is really bad, with many nodes being placed in exactly the
same location. This phenomenon is explained in Subsection 2.2. Using the minimum
linear arrangement we get a much better drawing, shown in Fig. 4(b). In Fig. 4(c) we
show a slightly improved result produced by the final beautification.

(a) (b) (c)

Fig. 4. A 5-level complete binary tree (a) x-coordinates obtained using the Fiedler vector; (b)
x-coordinates obtained using the minimum linear arrangement; (c) applying final beautification
to refine x-coordinates of (b)

Figure 5 shows three instructive examples. Figure 5(a) shows a directed cycle with
an additional edge. In contrast to a pure cycle, which is regular and thus hierarchy-free,
this digraph, thanks to the extra edge, does contain hierarchical information. Figure 5(b)
shows an acyclic digraph comprised of a few parallel paths of different lengths. In spite
of the diversity of path lengths, all edges are drawn in the same direction. Figure 5(c)
is a cyclic version of the former digraph, with the direction of the edges along one of
the paths (the middle one) being inverted. Interestingly, the drawing is almost identical
to that of the acyclic version, with the principal difference being the direction of the
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(a) (b) (c)

Fig. 5. Three examples of digraphs; (a) a distorted cycle. The extra edge is responsible for the
observed hierarchy; (b) an acyclic digraph comprised of a few parallel paths with varying lengths;
(c) a cyclic version of the former digraph.

“reversed” edges. It seems that restricting the y-coordinates to strict horizontal layers
would ruin the natural structure of the graphs of Fig. 5(b,c).

In the rest of this section, we present graphs which are based on matrices from the
Matrix Market collection (available at: math.nist.gov/MatrixMarket/). Each
graph is constructed by taking a matrix and replacing each non-zero entry (i, j) with a
directed edge from i to j. In Table 1 we provide the sizes of the graphs and running times,
as measured on a Pentium IV 2GHz PC. The largest graph, containing 8192 nodes, was
drawn in less than 1

2 second. Unless otherwise is stated, we computed the x-coordinates
using the Fiedler vector (without final beautification).

Table 1. Running time (in seconds) of the the algorithm

graph |V| |E| x-coords y-coords total
time time time

Nos6 675 1290 0.000 0.015 0.015
Nos7 729 1944 0.000 0.016 0.016
Dwa512 512 1004 0.000 0.016 0.016
Dw2048 2048 4094 0.015 0.11 0.125
Dw8192 8192 17,404 0.150 0.250 0.4

Figure 6 shows two different drawings of the Nos6 graph. For both of them the
y-coordinates are the same (as is always the case, since there is a unique minimizer of
the hierarchy energy). However, the x-coordinates are different. In Fig. 6(a) they were
computed using the Fiedler vector, while in Fig. 6(b) they were computed using the
minimum linear arrangement. Both drawings exhibit the symmetries of the graph very
well. Regarding running times, computation of the minimum linear arrangement took
3.7sec, whereas computation of the Fiedler vector took only 0.015sec.
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(a) (b)

Fig. 6. The Nos6 graph. The x-coordinates are drawn by (a) Fiedler vector; (b) minimum linear
arrangement.

Fig. 7. Two different drawings of the Nos7 graph. The y-coordinates are the same, whereas the
x-coordinates obtained by two different Fiedler vectors.

Figure 6 shows two different layouts of the Nos7 graph. In both cases the x-coordina-
tes were constructed using the Fiedler vector. Here, the multiplicity of the lowest positive
eigenvalue of the Laplacian matrix is greater than 1, so there are two different Fiedler
vectors. The left-hand-side drawing draws the graph in a “layering style”, putting the
nodes on many horizontal layers. The right-hand-side drawing, has a three-dimensional
look. It arranges the nodes in 9 two-dimensional layers. Note that in both drawings the
edges point downwards.
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The Dwa512 graph The Dw2048 graph

The Dw8192 graph

Fig. 8. Graphs containing both directed and undirected edges. Directed edges are colored by red,
while undirected edges are colored by blue (see electronic version of this paper).

Interestingly, our algorithm can be applied to graphs containing both directed and
undirected edges. As was already mentioned, all we have to do to deal with an undirected
edge (i, j) is to set δij = δji = 0, meaning that such an edge induces no hierarchical
relation. Many graphs based on matrices in the Matrix Market collection contain both
directed edges (when entry (i, j) is non-zero and entry (j, i) is zero) and undirected edges
(when both entries (i, j) and (j, i) are non-zero). In Fig. 8 we show three such graphs:
Dwa512, Dw2048 and Dw8192. Directed edges are colored red and undirected edges
are colored blue. In all the drawings the graph structure is shown nicely with excellent
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symmetry preservation. Note that all directed edges point downwards, and that they
induce hierarchical relations between nodes that are contained in undirected components
of the graph. We think that these results demonstrate that sometimes restricting the nodes
to strict layers hides the graph’s natural structure.

5 Discussion

Wehave presented a digraph drawing algorithm that uses several one-dimensional energy
minimization problems to find an optimal drawing in two-dimensions. The vector of y-
coordinates is found using a rather elegant energy minimization algorithm, which yields
a unique global minimizer that nicely captures the hierarchical information. For the
vector of x-coordinates, which contains non-directional information, we are using an
optimization algorithm especially tailored for the one dimensional problem.

The layouts produced by our algorithm are very natural, and are not subject to any
predefined restrictions. In a way, they simply “let the graph speak for itself”. The fact
that the layout is a global minimizer of the one-dimensional energies enables a rather
accurate representation of many properties of the graph, such as its hierarchical structure
and its symmetries. In terms of running time, our algorithm is very fast, being able to
draw 10,000-node graphs in less than a second on a mid-range PC.

Significant virtues of our algorithm include its ability to draw cyclic digraphs without
having to invert edge directions, the possibility of applying it to graphs containing both
directed and undirected edges and its ability to measure the amount of hierarchy in the
digraph via the hierarchy index. The amount of hierarchy can be used to decide whether
to use hierarchical drawing tools to represent a given digraph, or to prefer undirected
graph drawing algorithms.

We believe this last issue to be worthy of further research, and suggest the possibility
of combining digraph drawing algorithms and undirected graph drawing algorithms into
a unified tool: Given a general digraph, we could use the hierarchy index on portions of
it, and draw the different portions either with this algorithm or with the other, depending
of their level of hierarchy. More specifically, one can scan the optimal y-coordinates
vector to find connected subgraphs, such that the nodes in each subgraph have similar
y-coordinates. Such subgraphs are candidates for being hierarchy-free components, and
should be processed separately.

Our algorithm can be used in two different ways for the benefit of the standard
approach for digraph drawing:

– It can induce layering: We can think of the optimal arrangement as a kind of a
‘continuous layering’. The usual discrete layering can be easily induced from it if
we divide the nodes into maximal subsets, such that within each subset the nodes
have successive y-coordinates and no edge resides within a single subset.

– It can induce ordering: Standard ordering algorithms are typically very local in
nature. In a single iteration only one layer is free to change the order of its nodes.
We can replace it with a more global approach, using the vector of x-coordinates
obtained by our ‘first stage’ to impose a ‘global ordering’.
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