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Objectives: To identify the underlying gene expression profiles of unexplained chronic 
fatigue subjects classified into five or six class solutions by principal component (PCA) and 
latent class analyses (LCA). Methods: Microarray expression data were available for 15,315 
genes and 111 female subjects enrolled from a population-based study on chronic fatigue 
syndrome. Algorithms were developed to assign gene scores and threshold values that 
signified the contribution of each gene to discriminate the multiclasses in each LCA 
solution. Unsupervised dimensionality reduction was first used to remove noise or 
otherwise uninformative gene combinations, followed by supervised dimensionality 
reduction to isolate gene combinations that best separate the classes. Results: The 
authors’ gene score and threshold algorithms identified 32 and 26 genes capable of 
discriminating the five and six multiclass solutions, respectively. Pair-wise comparisons 
suggested that some genes (zinc finger protein 350 [ZNF350], solute carrier family 1, 
member 6 [SLC1A6], F-box protein 7 [FBX07] and vacuole 14 protein homolog [VAC14]) 
distinguished most classes of fatigued subjects from healthy subjects, whereas others 
(patched homolog 2 [PTCH2] and T-cell leukemia/lymphoma [TCL1A]) differentiated 
specific fatigue classes. Conclusion: A computational approach was developed for general 
use to identify discriminatory genes in any multiclass problem. Using this approach, 
differences in gene expression were found to discriminate some classes of unexplained 
chronic fatigue, particularly one termed interoception.
Chronic fatigue syndrome (CFS) is a diagnosis
of uncertain nosology and etiology [1–3]. There
have been many studies of etiology and patho-
physiology; however, consistent findings have
been rare [3]. This may be due to the fact that
CFS is heterogeneous, thus hindering any
attempt to find biological markers. Several stud-
ies attempting to define CFS using symptoms
and other clinical measures have produced evi-
dence of heterogeneity [4–7], but no study has
used biological measures to define the different
putative endophenotypes that may make up
CFS. Three small case–control studies of gene
transcription in CFS have been published [8–10].
All three found differences in gene expression
between CFS defined cases and healthy controls,
but not one gene expression was common to two
of the three studies. This discrepancy may be
explained by the likely heterogeneity of CFS. 

CFS case ascertainment is complicated by the
fact that CFS is defined somewhat arbitrarily,
although consensually [101]. This restrictive defi-
nition, useful for research though it is, omits
two-thirds of people who have chronic medi-
cally unexplained fatigue [11]. In an attempt to
refute or confirm the heterogeneity of CFS and
chronic unexplained fatigue in general, principal

components analysis (PCA) and latent class
analysis (LCA) were used with clinical and bio-
logical measures from 159 female subjects of the
Wichita (KS, USA) study [12].

More formally, a classification scheme is a
division of a set of subjects into disjoint and not
necessarily exhaustive classes. In other words,
each subject is associated with, at most, one class.
In this regard, a known subject is a subject that is
associated with one particular class, while an
unknown subject is a subject whose associated
class is unknown. In studying diseases, a two-
class classification scheme is typically used, with
the two classes being healthy and ill. In the afore-
mentioned study [12] the authors achieved a
multiclass classification scheme consisting, in
addition to a healthy class, of a collection of four
or five different fatigue-related syndromes. 

Given microarray data, it is relatively easy to
detect genes whose expression level significantly
differs between two classes, and a diverse reper-
toire of biomarker detection technique had been
proposed [13–15]. The multiclass case poses a
more difficult challenge, as typically no single
gene can be solely used to discriminate between
the classes. Recently several algorithms, predom-
inantly based on machine learning techniques,
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had been proposed for the multiclass problem
[16–19]. Here, we would like to suggest a simple
and intuitive technique, based on simple linear
transformations of the data. This computational
approach was further used to provide an external
test of gene-expression-based validity for the
multiple classes of unexplained chronic fatigue
identified by PCA and LCA [12]. 

Materials & methods
Subjects & classification of unexplained 
chronic fatigue
This study adhered to human experimentation
guidelines of the Helsinki Declaration and was
approved by the Centers for Disease Control
and Prevention (CDC) Institutional Review
Board. All subjects were volunteers who gave
informed consent. 

Recruitment of subjects with medically unex-
plained chronic fatigue and matched controls
was described by Vernon and Reeves [20]. Hetero-
geneity in female subjects from this group of
subjects with fatiguing illness was assessed by
Vollmer-Conna and colleagues [12] by PCA and
LCA. Male subjects were excluded from the
analysis since differentiation of distinct factors
was strongly affected by normal male attributes
(e.g., high testosterone and hemoglobin concen-
tration) and there were insufficient male subjects
to be adequately classified [12]. LCA resulted in
two statistically coherent and interpretable classi-
fication schemes, a five-class solution (LCA5)
and a six-class solution (LCA6) with clinical
significance [12]. 

Among the classes in LCA5, Class 1 subjects
were called ‘obese hypnoea’; Class 2 captured well
subjects; Class 3 subjects were ‘obese hypnoea and
stressed’; Class 4 were primarily ‘interoceptive’
and Class 5 included interoception–depressed
subjects. Among the classes in LCA6 solution,
Class 1 (obese hypnoea) contained obese subjects
with prominent postexertional fatigue, sleep hyp-
noea and objective sleep disturbance; Class 2
(well) consisted of subjects who, although obese,
were characterized by few symptoms, low depres-
sion scores and good objective sleep; Class 3
(obese hypnoea and stressed) captured individuals
that were obese and had sleep hypnoea and a
physiological stress response; Class 4 (interocep-
tion) differentiated a group with a lower body
mass index and less depression, with symptoms of
muscle pain and subjective sleep complaints but
no objective sleep problems; Classes 5 and 6 were
similar in that they captured less obese, but highly
symptomatic and depressed individuals with

prominent postexertional fatigue. In contrast to
Class 5 (interoception–depression), subjects in
Class 6 (multisymptomatic depressed, stressed
and postmenopausal) were additionally defined
by a lack of sex hormones and low heart rate vari-
ability during sleep, objective sleep disturbance
and low cortisol. Detailed clinical characteristics
and demographics of subjects assigned to different
classes in the LCA5 and LCA6 solutions are given
separately in this issue [12]. 

Microarray experiments
Details on the collection and processing of
peripheral blood mononuclear cells, total RNA
extraction, cDNA synthesis, and microarray
hybridization are provided by Vernon and
Reeves [20]. Details on the quality control, tech-
nical replicates and normalization of the micro-
array data set of 15,315 genes used in this
analysis were described by Whistler and col-
leagues [21]. The normalized expression levels of
each gene across all the subjects were centered,
that is brought to zero-mean. The present analy-
sis was carried out with expression data from 111
out of 159 female subjects, only because micro-
array data from the remaining 48 subjects did
not pass the quality control. The proportions of
subjects assigned to different classes in the LCA5
and LCA6 solutions are shown in Figure 1 (indi-
vidual subject assignment to classes is available
upon request). 

Data analysis
Unsupervised dimensionality reduction
Each subject can be viewed as if it is described by a
list of 15,315 variables, each variable being the
expression level of a particular gene. Conse-
quently, the 15,315-by-111 raw data matrix can
be viewed as a collection of 111 subjects in the
15,315-dimensional gene space. In such situa-
tions, when the number of variables exceeds the
number of subjects the correlation structure can-
not be fully revealed. Indeed, it is well known that
N points can always be accurately embedded in
(N-1)-dimensional space, suggesting that the 111
subjects can be described by a mere 110 variables
(each is a linear combination of the original
15,315 variables).

We have used PCA to find such an ortho-
normal set of new variables, which are nothing
but the first 110 principal components (PCs).
An additional advantage of using PCA to reduce
dimensionality is that the new variables are
sorted by their importance in explaining the var-
iability in the data. Actually, it is a good practice
Pharmacogenomics (2006)  7(3)
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to keep even lesser PCs, as removal of PCs with
low eigenvalues removes noise while hardly
affecting the structure of the data. Formally, let
X be the original 15,315-by-111 matrix of cen-
tered raw data, and let U be the 15,315-by-r
matrix of the first r PCs, 0<r≤110. The projec-
tion of the data onto the PC space is

, which is of dimensions r-by-111.

For the time being, r is an unspecified parame-
ter, but we shall later discuss how it can be
determined in a data-driven fashion.

Supervised dimensionality reduction
The r PCs can be viewed as r ‘composite genes’.
We can next ask which of these composite genes
has a distinctly different expression pattern

Figure 1. Distribution of 111 female subjects in each class in the LCA5 and 
LCA6 schemes.
 

LCA: Latent class analysis.

Obese hypnoea
& stressed
17 subjects 
(15.32%)

Interoception
18 subjects
(16.22%)

Interoception –
depression
22 subjects
(19.82%)

Well
23 subjects
(20.72%)

Obese hypnoea
31 subjects
(27.93%)

Multi-
symtomatic
depressed, 
stressed and
post-
menopausal
11 subjects
(9.91%) Interoception –

depression
14 subjects
(12.61%)

Interoception
15 subjects
(13.51%)

Obese hypnoea
& stressed
21 subjects
(18.92%)

Well
23 subjects
(20.72%)

Obese hypnoea
27 subjects
(24.32%)

Pharmacogenomics

LCA5

LCA6

X′ UT X⋅=
377



RESEARCH REPORT – Carmel, Efroni, White, Aslakson, Vollmer-Conna & Rajeevan 

378
 Pharmacogenomics (2006)  7(3)

across the different classes. To this end, let the
subjects be divided into g classes, with the ith
class containing ni subjects. Let mi and Si be the
mean and the covariance matrix of the ith class,
respectively. The average within-class covariance
is defined as: 

where  is the total number of subjects
[22]. The between-class covariance is defined as:

 

where m is the mean of the entire data [22].
Using the well-studied Fisher quotient [22], we
further reduce the dimensionality of the data by
means of a linear transformation matrix V of
dimensions r-by-(g-1). This matrix is the
solution of:

subject to the constraint . The rational
in this maximization is to find those variables for

Figure 2. The J1 measure for LCA5 (top) and LCA6 (bottom). The main figure depicts 
the change in J1 as a function of the number of retained PCs. The small figure shows 
the J2 values for the same data.
 

J1 measures the compactness of classes in the reduced dimensional space, whereas J2 measures the amount 
of overfitting in the supervised dimensionality reduction.
LCA: Latent class analysis; PC: Principal component.
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LCA: Latent class analysis
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which the classes are as compact as possible, while
at the same time the classes are as separated from
each other as possible. The matrix V can be
viewed as a set of g – 1 new composite variables,
called discriminant vectors (DVs). Just like the
PCs, the DVs are sorted by their importance in
separating the different classes. The transformed
data is now , which is a (g – 1)-by-111
matrix. Note that in our case g – 1 is 4 or 5, thus
giving rise to an enormous reduction in dimen-
sionality, from an original list of 15,315 genes to a
compact set of 4–5 composite genes. 

Gene scores
We would like to infer from the composition of
the DVs and the PCs on the relative contribu-
tion of the original genes to the separation

between the classes. This is achieved in two
steps. First, we assign each PC a score. The score
of the jth PC is:

Here, µk is the value of the Fisher quotient for the
kth DV,  is the total sum of the Fisher
quotient values, and vjk is the jkth element in the
matrix V, corresponding to the contribution of
the jth PC to the kth DV.

Next, the original genes are assigned with
scores. The score of the ith gene is:

where N is the total number of genes (15,315)
and uij is the ijth element in the matrix U, corre-
sponding to the contribution of the ith gene to
the jth PC. Each score is positive, and the sum of
all scores is N. Obviously, the higher the score of a
gene, the higher its contribution to the separation
between classes.

The optimal number of PCs
It is not straightforward to devise a criterion for
the optimal number of PCs to retain, r. The
rational is that taking too many PCs (overesti-
mating r) results in accounting for too much
noise in the analysis. On the other hand, too few
PCs (underestimating r) results in using only a
portion of the relevant information, obtaining
poor separation between the classes.

To formulate this intuition, the Mahalanobis
distance [22] between each sample and all the
classes was computed. Explicitly, the distance
between the ith sample and the kth class is

where is the (g – 1)-dimensional representa-
tion of the ith subject. Notice that the average
covariance matrix is taken as if it is the true cov-
ariance of each of the classes. For each sample,
the minimal Mahalanobis distance (correspond-
ing to its Mahalanobis distance from the closest
class) is taken, and then averaged across all sam-
ples. For a given r, this results in a measure,
denoted J1, for the compactness of the classes in
the (g – 1)-dimensional space.

Another risk of keeping too many PCs is that
of overfitting. To reduce this risk we define
another measure, denoted J2, for the amount of
overfitting. To this end, we use the concept of
cross-validation and assume that a certain frac-
tion of the subjects, f, have unknown classifica-
tion. The known samples are used to maximize
the Fisher quotient, and then we compute the
Mahalanobis distance between each unknown
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Figure 4. The inters
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subject and all the classes. Analogously to J1, J2 is
obtained by taking for each subject the mini-
mum of these distances, and then averaging over
all the subjects. The subjects that are assumed to
be unknowns are chosen at random. To account
for these random fluctuations, J2 is computed
several times for any given r. The values are used
to determine the average value of J2, as well its
confidence interval.

Results
The values of the J1 measure for the LCA5 and
LCA6 classification are shown in Figure 2. As
expected, the curve is concave as too many PCs or
too few PCs give rise to elevated J1 values. We
define the optimal number of PCs, r, as the mini-
mum of this curve. Interestingly, r = 31 for both
classification schemes. We also computed the J2
measure (Figure 2) for the two classification
schemes, using 20 repetitions for each value of r.
Visual inspection of the result clearly reveals that at
around r = 31 we are at reduced risk of overfitting.

Using r = 31, we have computed the score of
each gene for either of the classification
schemes (Figure 3; a complete list of all genes and
scores is available upon request). The two score
lists have a Spearman (rank) correlation of 0.96,
suggesting a striking consistency between
LCA5 and LCA6 solutions. 

Taking advantage of the fact that the sorted
scores are asymptotically linear toward the edges,
we can define, for mere convenience, a short-list
of discriminatory genes by intersecting the two
asymptotes (Figure 4). For the LCA5 and LCA6,
this gives a list of 26 and 32 genes, respectively
(Table 1), with 19 genes in common between
these solutions. These 19 common genes are to
be taken as the best candidates for further inves-
tigation. Obviously, this is a rather arbitrary cut-
off, and there is no limitation to the size of the
list that one might want to investigate.

We tested the robustness of the choice of the
number of PCs to retain, r, by repeating the
entire analysis using different values of r. Analy-
sis is robust with r values ranging from 25–35, as
indicated by the high Spearman correlation
(0.97–0.98) and by the high percentage (89%)
of genes overlapping within the short list of
genes (Table 2). 

Further pairwise analysis was conducted using
the set of discriminant genes for the LCA5 and
LCA6 solutions (Table 3). This identified a total of
17 genes differentially expressed over twofold
between the well subjects and subjects with
symptoms in both LCA solutions. Among the
differentially expressed genes on pairwise com-
parison, 13 were upregulated, and four were
either up- or down-regulated depending on the
comparison. Nine genes were differentially
expressed in one or more pairwise comparison of
both LCA5 and LCA6 class solutions, whereas
seven genes were specific to LCA6 solution.
Regardless of the LCA classification scheme, sol-
ute carrier family 1, member 6 (SLC1A6) was
upregulated (three- to 30-fold) in all fatigued
subjects compared with well subjects. Zinc finger
protein 350 (ZNF350; three- to 92-fold) and
F-box protein 7 (FBX07; four- to 28-fold) were
also upregulated between all fatigued groups and
well subjects except for the fatigued subjects in
Class 4 of LCA6 solution. On the other hand,
vacuole 14 protein homolog (VAC14) was down
regulated (25- to 50-fold) in all fatigued subjects
except for fatigued subjects in Class 4 of LCA6
solution. Class 4 in both LCA classification
schemes was also unique with respect to the
upregulation of patched homolog 2 (PTCH2; six-
to 55-fold). Several of the differentially expressed
genes between fatigued and well subjects were
common for Classes 1, 3 and 5 of LCA5 solution.
A more or less similar trend was seen with LCA6
solution also, although more genes were retained
as differentially expressed in the pairwise
comparison as opposed to LCA5 solution. 

ection between the two asymptotes for 
ion scheme defines a short-list of size 26.

.
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Discussion
Unexplained chronic fatigue remains a signifi-
cant public health problem because of potential
heterogeneity in the syndrome and consequent
complexities with its diagnosis. Recently, gene
expression profiling studies using microarray
and differential display polymerase chain reac-
tion (PCR) technologies were undertaken to
identify biomarkers of CFS with subjects identi-
fied based on the 1994 CDC case definition
[8–10,23], being compared with healthy controls.
A standard case–control, two-class study design
was used in these studies reporting deregulation

in multiple pathways involved in immune func-
tion, cell-cycle control, nervous system function
and viral infection [9]. No single abnormal gene
expression was replicated in any of these studies.
This involvement of genes from different dispa-
rate pathways may have resulted from the heter-
ogeneity of subjects with fatigue defined
homogeneously in these previous studies.
Unlike earlier reports, we studied gene expres-
sion changes in fatigued subjects who were clas-
sified empirically into four or five discrete
subgroups by Vollmer-Conna and colleagues [12]

by PCA and LCA. 

Table 1. Genes discriminating multiple classes of fatigued subjects in LCA solutions. 

LCA5* LCA6

GenBank accession number Gene score GenBank accession number Gene score

U38996 11.66 U38996 9.71

AF087651 8.63 AL135786 8.91

NM_004423 8.38 AF087651 8.71

AK027244 7.93 BC009921 8.60

AL135786 7.84 NM_004423 7.34

BC009921 7.39 AF233225 7.23

AK027172 7.31 AF225419 7.14

AF225419 6.92 NM_018052 6.84

AK024660 6.79 BC020172 6.70

AF233225 6.71 AK027244 6.63

AB029013 6.67 U59494 6.41

BC021294 6.62 NM_012421 6.38

AF031588 6.43 NM_000570 6.33

BC001673 6.34 AK027172 6.29

L15702 6.33 AB029013 6.14

AF213465 6.11 NM_014337 6.10

NM_012421 6.11 NM_006593 6.06

BC012375 6.11 AL031316 5.99

AF152493 6.11 AF032119 5.96

AF490768 6.10 AF031588 5.89

NM_018052 6.01 AK024660 5.87

AB023230 5.94 NM_002502 5.84

NM_014337 5.92 NM_004526 5.81

BC028721 5.86 BC009891 5.74

NM_007028 5.76 NM_007028 5.73

AF090988 5.75 BCO28721 5.58

BC029579 5.73

AK023347 5.67

BC020172 5.67

NM_000570 5.59

NM_021833 5.53

NM_032493 5.52

*Genes  in bold in LCA5 solution are also present in LCA6 solution.
LCA: Latent class analysis.
381
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Table 3. Pairwise ex
chronic fatigue. 

GenBank 
accession 
number

Gene 
symbol

NM_018052 VAC14

NM_000570 FCGR3A

NM_007028 TRIM31

NM_012421 RLF

L15702 BF

BC028721 SLC1A6

AF233225 FBX07

BC009921 ZNF350

AB029013 WHSC1

AF087651 PTCH2

NM_006593 TBR1

U59494 THPO

AF032119 CASK

AF225419 HSCARG

BC009891 TCL1A

AL031316 Not 
available

NM_002502 NFKB2

*Fold-differences (≥ twofo

expression values for each
BF: Human complement fa
low affinity IIIa, receptor (C
L-myc fusion; SLC1A6: Solu
leukemia/lymphoma 1A; T
WHSC1: Wolf-Hirschhorn s
In the era of large-scale microarray experi-
ments, identifying biomarkers for diseases has
become a target of intensive research. Normally,
these biomarkers are those genes whose expres-
sion level show significantly different behavior in
healthy subjects compared with ill ones. In this
study, the computational problem is somewhat
more involved, as we target also the problem of
discriminating multiple putative conditions. We
suggest a novel way to measure each gene’s
contribution to the discrimination between all

the classes [16–19]. This approach adopts ideas
from the field of linear dimensionality reduction,
and uses two consecutive linear transformations
of the data. This algorithm is fairly general, and
can be applied to any microarray data linked to a
multiclass classification scheme.

Based on our algorithm, we were able to focus
on 32 genes discriminating between the LCA5
classes and on 26 genes discriminating between
the LCA6 classes, with 19 genes common among
a total of 39 distinct genes between the solutions.

Table 2. Robustness of multiclass discriminant gene analysis for LCA6 solution.

Number of PCA 
retained

Spearman
correlation†

Size of short list Overlap
between short list

20 0.82 27 15 (57.7%)

25 0.97 33 23 (88.5%)

35 0.98 29 23 (88.5%)

40 0.88 41 20 (76.9%)
†Spearman correlation is computed between the new scores and the original ones computed with r = 31.
LCA: Latent class analysis; PCA: Principal component analysis.

pression pattern of genes discriminating LCA5 and LCA6 solutions of unexplained 

Expression 
pattern‡

Fold difference*

LCA5 LCA6 

Class 1 Class 3 Class 4 Class 5 Class 1 Class 3 Class 4 Class 5 Class 6

↓↑ 0.02 0.03 0.03 0.04 0.02 2.43 0.04 0.02

↑↓ 2.94 2.43 2.90 3.04 2.90 0.03 2.25 2.21

↑ 4.50 2.18 2.18 3.04 4.75

↑ 4.81 2.32 2.32 2.11 4.54

↑ 5.12 5.28 7.93 9.10

↑ 9.55 14.41 29.46 30.68 9.55 28.43 20.78 29.93 3.69

↑ 19.55 26.48 4.16 28.35 19.55 28.35 26.80 27.75

↑ 52.26 74.23 3.35 91.59 52.26 83.02 64.83 82.48

↑↓ 2.32 3.30 2.82 2.28 2.44 0.06

↑ 6.74 55.96

↑↓ 3.32 3.31 0.05 3.76 4.78

↑ 4.83 5.73 5.19 5.07

↑ 32.97 32.47 21.57 42.03

↑ 2.17

↑ 7.47

↑ 2.03 2.94

↑ 2.07 2.34

ld) with respect to expression in Class 2 of each solution. Fold differences were determined from median normalized 

 class. ‡↑ indicates up regulation and ↓ indicates down regulation.
ctor B; CASK: Calcium/calmodulin-dependent serine protein kinase; FBX07: F-box protein 7; FCGR3A: Fc fragment of IgG, 
D16a); HSCARG: Hypothetical protein LOC57407; NFKB2: Nuclear Factor κB2; PTCH2: Patched homolog 2; RLF: Rearranged 

te carrier family 1 (high affinity aspartate/glutamate transporter), member 6; TBR1: T-box, brain, 1; TCL1A: T-cell 
HPO: Thrombopoietin; TRIM31: Tripartite motif-containing 31; VAC14: Vacuole 14 protein homolog; 
yndrome candidate 1; ZNF350: Zinc finger protein 350.
Pharmacogenomics (2006)  7(3)
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Pairwise comparison within each LCA classifica-
tion scheme identified a total of 17 genes differen-
tially expressed between various classes of fatigued
subjects and healthy Class 2 subjects. Broadly,
these genes are implicated with immune function
(Fc fragment of immunoglobulin G, low affinity
IIIa, receptor [FCGR3A] and human complement
factor B [BF]), transcription (ZNF350, T-box,
brain, 1 [TBR1], hypothetical protein
LOC57407 [HSCARG], nuclear factor κB2

[NFKB2]), ubiquitination (tripartite motif-con-
taining 31 [TRIM31], rearranged L-myc fusion
[RLF], FBX07, and Wolf-Hirschhorn syndrome
candidate 1 [WHSC1]), signal transduction
(VAC14 and calcium/calmodulin-dependent ser-
ine protein kinase [CASK]) and transporter
(SLC1A6) (Table 4). Among these differentially
expressed genes, SLC1A6, ZNF350 and FBX07
are particularly interesting, since they were upreg-
ulated in all, or most, classes of fatigued subjects

Table 4. Functions of genes with differential expression in pairwise comparisons of 
various classes of unexplained chronic fatigue subjects with healthy subjects in 
LCA solution.

GenBank
accession number

Gene 
symbol

Gene name Function

NM_018052 VAC14 Vac14 homolog Signal transduction, receptor 
activity

NM_000570 FCGR3A Fc fragment of IgG, low 
affinity IIIa, receptor

Immune response, receptor 
activity

NM_007028 TRIM31 Tripartite motif-containing 31 Protein ubiquitination

NM_012421 RLF Rearranged L-myc fusion 
sequence

Zinc ion binding, catalytic 
activity

L15702 BF Human compliment factor B A component of alternative 
pathway of compliment 
activation. Immune function

BC028721 SLC1A6 Solute carrier family 1 (high 
affinity aspartate/glutamate 
transporter) member 6

Glutamate/aspartate 
transporter, synaptic 
transmission

AF233225 FBX07 F-box protein 7 Ubiquitin-dependent protein 
catabolism

BC009921 ZNF350 Zinc finger protein 350 Regulation of transcription

AB029013 WHSC1 Wolf-Hirschhorn syndrome 
candidate 

DNA binding, protein 
ubiquitination. 

AF087651 PTCH2 Patched homolog 2 
(Drosophila)

Member of hedgehog signaling 
pathway, implicated in 
tumorigenesis. 

NM_006593 TBR1 T-box, brain, 1 Transcription factor, brain 
development

U59494 THPO Thrombopoietin Humoral growth factor for 
megakaryocyte proliferation 
and maturation

AF032119 CASK Calcium/calmodulin-
dependent serine protein 
kinase

Cell adhesion, protein tyrosine 
kinase activity

AF225419 HSCARG HSCARG Protein Transcriptional repressor activity

BC009891 TCL1A T-cell leukemia/lymphoma 1A A protooncogene of T-cell 
malignancies

AL031316 Not available Not available Not available

NM_002502 NFKB2 Nuclear factor of κ light 
polypeptide gene enhancer 
in B-cells

Transcription factor, linked to 
inflammatory conditions of 
several diseases

HSCARG: Hypothetical protein LOC57407; IgG: Immunoglobulin G; LCA: Latent class analysis. 
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compared with healthy subjects. ZNF350 is
reported to be associated with breast cancer 1
(BRCA1) for its transcriptional regulation of
DNA damage-inducible genes, such as GADD45
that functions in cell-cycle arrest [24]. SLC1A6
(high affinity aspartate/glutamate transporter) is a
member of the excitotory amino acid transporter
of the CNS. These transporters maintain extracel-
lular glutamate concentrations below excitotoxic
levels, and limit the activation of glutamate recep-
tors [25]. FBX07 is a component of E3 ubiquitin
protein ligases which function in phosphoryla-
tion-dependent ubiquitination [26]. VAC14
(Vac14 homolog, Saccharomyces cerevisiae) was
downregulated in most of the fatigued subjects,
except those in Class 4 of the LCA6 solution in
which it showed marginal upregulation. Reduced
levels of VAC14, a novel positive regulator of PIK-
fyve, may render cells susceptible to developing
cytoplasmic vacuoles [27], a hypothesis that needs
further testing to detect abnormal cell morphol-
ogy in CFS subjects. 

Although a few genes clearly distinguished
healthy subjects from all fatigued subjects, several
of the differentially expressed genes were common
for Classes 1, 3 and 5 of LCA5 solution with simi-
lar trend with LCA6 solution. However, Class 4
subjects, characterized as interoceptive, and thus
likely to be associated with hypersensitivity in
CNS processes, appeared to stand out from the
rest of the fatiguing subjects in this pairwise com-
parison. PTCH2, a member of the hedgehog sign-
aling pathway and implicated in tumorigenesis [28],
and TCL1A, protooncogene of T-cell malignancies
[29], were upregulated in Class 4 interoceptive sub-
jects only in both LCA solutions. The functional
role of patched homologs in the adult brain
remains to be elucidated, but it is interesting to
note its upregulation in interoceptive subjects con-
sidering the role of hedgehog signaling in establish-
ing morphogenetic gradients during brain
growth [30]. Fatigued subjects classified as intercep-
tive were also different in terms of downregulation
of TBR1, and for lack of differential expression of
CASK, while these genes were upregulated in sub-
jects belonging to other fatigued classes in LCA6
solution. TBR1 is a neuron-specific T-box tran-
scription factor, and in complex with CASK, tar-
gets the expression of several genes including
NMDAR subunits 2b and subunit 1 [31].

Deregulation of TBR-1/CASK complex can thus
adversely affect the neuronal activity and function
in fatigued subjects, and possibly differently in
interoceptive subjects. 

Complement activation products as markers
of CFS were proposed based on the observa-
tion of increased complement split product
C4a in CFS subjects in response to exercise
challenge [32]. We observed upregulation of BF
in all fatigued subjects in the LCA5 solution,
but differential expression of this gene was not
apparent in the LCA6 solution. Likewise, dif-
ferential expression of a number of genes
(TBR1,  thrombopoietin [THPO], CASK,
HSCARG, TCL1A, and NFKB2) was unique to
the LCA6 solution only. This suggests distinct
profiles of gene expression associated with dif-
ferent LCA solutions, although the underlying
reasons for this difference are not obvious from
these results. 

Many of the genes with interesting differences
between LCA classes have no known association
with any illnesses with or without fatigue as a
symptom. The expression profile of these genes
requires further experimental validation in terms
of their specific association to one or more classes
of unexplained chronic fatigue subjects derived
from different populations. 

Outlook
In 5 or 10 years, we will have replicated or
refined the heterogeneity of CFS using gene
expression as an external validator. We will also
have checked each of the genes in the short-list
individually for their role in CFS patho-
physiology, thus being able to validate the ana-
lytical technique that has been described here for
the identification of these genes. Moreover, the
same analytical technique will be used on differ-
ent genomic datasets of multiple classes, further
testing its range of applicability.
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