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Abstract

When measuring over-concentrated stimuli, chemical sensors tend to exhibit corrupted time signals, which are normally categorized as
missing data. Such a failure of one or more sensors occurs frequently in applications where an eNose is exposed to a diverse repertoire of
chemicals. As a rule, missing data are removed from the dataset by leaving a potentially large portion of the original dataset unutilized. Here
we propose an algorithm to handle such missing data by utilizing intact regions of corrupted signals to restore the damaged regions. We do
so by fitting a parametric model of the sensor response over time to the intact regions, and using the resulting model for the restoration. We
show that the restoration is both accurate and consistent, thus allowing for the restored signals to take part in any subsequent data analysis
process.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many kinds of chemical sensors are embedded in con-
temporary electronic noses (eNoses), which utilize a rather
broad spectrum of physical principles and technologies[1,2].
Whatever the sensor technology used, the response strength
is characterized by a monotonic dependence on the stimu-
lus concentration, thus limiting it to a certain “operational”
concentration range [cmin, cmax]. If the stimulus concentra-
tion is belowcmin—the detection threshold—the response
is too weak to carry any discriminatory information. In con-
trast, if the stimulus concentration is abovecmax—which we
may call thefailure threshold—the response signal is cor-
rupted and cannot be used for data analysis. Usually, the
failure threshold is not related to any physical or chemical
properties of the sensor, but is rather an effect of the sup-
porting electronic circuits. Hereinafter we shall use the term
dynamic range to describe this “operational” range [cmin,
cmax].

In applications that expose an eNose to one or more sim-
ilar chemicals, with limited concentration fluctuations (e.g.,
an eNose that monitors the quality of raw materials), the
sensitivity of the sensors can be tuned such that a typical
stimulus safely resides inside the dynamic range. In other
applications, however, eNoses are expected to record stimuli
that were never presented to them before, or stimuli having
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diverse chemical properties (e.g., an eNose intended to serve
as a sniffer in an odor communication system[3]). In such
cases, a reasonable strategy would be to fix each sensor in
its most likely working point and to carry out special pro-
cessing when a stimulus is outside the dynamic range. De-
spite the fact that such special processing can significantly
broaden the scope of the applicability of eNoses by algorith-
mically extending their dynamic range, this has not yet been
reported in the literature. Instead, the common practice is to
categorize corrupted signals as missing data, and to remove
them from the dataset. This, however, might cause to unde-
sirable (and unnecessary) reduction in the size of the dataset.
For example, suppose that a 10-sensor eNose is trained to
discriminate between five different stimuli, and that one of
the stimuli has four of its signals corrupted. In that case, one
can either remove that stimulus from the dataset (remov-
ing 20% of the original dataset) thus limiting the eNose to
discriminate only between four stimuli, or one can remove
the four awkward sensors from the dataset (removing 40%
of the original dataset) thus utilizing only 6 of the 10 sen-
sors. Either way, a large portion of the dataset is removed,
including many intact signals.

In this paper we suggest an algorithm for “fixing” cor-
rupted signals by restoring their damaged parts. By defini-
tion, for stimulus concentrations belowcmin, it is useless to
infer anything from the signal since it carries zero, or nearly
zero, information. In sharp contrast, corrupted signals of-
ten contain wide intact regions that carry much information.
In a previous work[4], we developed an analytic form of
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Fig. 1. Schematic shape of a transient signal.

the time-dependent sensor response, characterized by four
physically meaningful parameters. Here we show that these
parameters can be estimated using only portions of a signal,
suggesting the restoration of a corrupted signal based upon
its intact regions.

2. Types of corruption

We limit our discussion to transient signals, produced by
injecting a stimulus for a relatively short period of time
(typically, around 30 s), and then purging the system. Such
signals have the typical shape shown inFig. 1.

Our experiments have shown that when a failure occurs,
the sensor recovers when the stimulus concentration drops
down again during the purging phase, as is schematically
described inFig. 2. We have further found that a failure
appears in one of three forms:

• Saturated signal: In the damaged region the sensor shows
a constant reading; seeFig. 3a.
• Raging unbiased signal: In the damaged region the sensor

runs wildly; seeFig. 3b.
• Raging biased signal: In the damaged region the sensor

runs wildly, and the baseline seems to have been shifted
after the recovery; seeFig. 3c and d.

We would like to emphasize that neither the saturation
nor the wild running express chemical phenomena on the
sensor’s surface, but rather are artifacts of the supporting
electronics driven outside its dynamic range. Notice, as in

Fig. 2. Dynamics of a failure in a transient signal. The solid lines depict the
intact regions of the signal, in between which the corrupted region resides.
The dashed line depicts the desired output of a restoration algorithm.

Fig. 3b, that the concentration at which the recovery occurs
can be different from the concentration at which the corrup-
tion commences.

3. The restoration algorithm

In [4] we used a simple physical description of the
measurement process to derive an analytic model—the
Lorentzian model—for the sensor’s response over time.
Explicitly, the model reads

L(t; θ) =
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whereθ = {β, τ, ti, T} is the set of parameters of the model,
t is the time andL is the sensor’s response.

Before explaining how to utilize the Lorentzian model
for the purpose of signal restoration, we must define some
convenient notations. Let us uses(t) to denote the measured
time response of a sensor. Lettl be the time of the last
intact point before the corruption commences (l for left), and
similarly let tr be the time of the first intact point after the
corruption ceases (r for right); seeFig. 2. When the signal is
high above its baseline, the signal-to-noise ratio is also high,
resulting in smooth derivatives. Thus,tl andtr can be easily
found by detecting rapid changes in the derivative. Let us
symbolically writes(t) as a composition of two signals,s(t)
= sI (t) + sD(t), wheresI (t) is the intact region(s) andsD(t)
is the damaged region. More formally,

sI(t)=
{

s(t) t ≤ tl or t ≥ tr
0 otherwise

sD(t)=
{

s(t) tl < t < tr
0 otherwise
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Fig. 3. Examples of the different corruption types: (a) saturated signal, (b) raging unbiased signal, (c) raging biased signal and (d) zoom on the sensor
recovery of the raging biased signal shown in (c). Notice that the overall shape of the signal after the recovery seems good despite of the baseline shift.

Analogously, we useLI (t; θ) andLD(t; θ) for the Lorentzian
response calculated at the intact and damaged regions re-
spectively:

LI(t; θ) =
{

L(t; θ) t ≤ tl or t ≥ tr
0 otherwise

LD(t; θ) =
{

L(t; θ) tl < t < tr
0 otherwise

Letθ∗ be the estimator of the Lorentzian parameters obtained
by curve fitting the Lorentzian model to the intact region
sI (t). A naive restoration algorithm would then be

s∗(t) = sI(t)+ LD(t; θ∗)

where s∗(t) denotes the restored signal. This, however, is
not good enough in practice, as can be seen inFig. 4a. s(t),
and even more sosI (t), obey the Lorentzian model only
approximately, and consequentlys∗(t) has two undesirable
properties: Its height is lower than it should be, and it is not
continuous in the boundaries of the damaged region.

To achieve better restoration, we suggest the following
iterative algorithm, which forces continuity ons∗(t), and by
doing so also increases its height:

1. Correcting for baseline bias: For raging biased signals,
as inFig. 3c, the baseline shift should be corrected by

s(t)← s(t)− s(last point) for t ≥ tr

Here we explicitly assume that the sensor has fully re-
turned to its baseline by the end of the measurement.

2. Modifying LD(t; θ∗) to keeps∗(t) continuous: Letsl
= s(tl ) − L(tl ; θ∗) and sr = s(tr) − L(tr; θ∗) be the
deviations of the best-fitting Lorentzian model from the
original signal at the boundaries of the damaged region.
Let us define a linear correction function

(t) = sl + sr −sl

tr − tl
(t − tl)

such thatL(tr; �∗) + (tr) = s(tr) andL(tl ; �∗) + (tl )
= s(tl ). If we defineD(t) as
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Fig. 4. Comparison between restoration algorithms: (a) the naive algorithm and (b) the iterative algorithm.

Fig. 5. Restoration at work: (a) saturated signal and (b) raging biased signal.

D(t) =
{

(t) tl < t < tr
0 otherwise

the restored signal would now be

s∗(t) = sI(t)+ LD(t; θ∗)+D(t)

3. Updatingθ∗: Find θ∗∗—the estimator of the Lorentzian
parameters obtained by fitting the Lorentzian model to
s∗(t). If |θ∗∗ − θ∗| is smaller than some predefined toler-
ance, stop. Otherwise, substituteθ∗ = θ∗∗ and return to
step 2.

Fig. 4b demonstrates the significant improvement in the
restoration achieved by the iterative algorithm. Hereinafter,
we shall always use the iterative algorithm for restoration.
Two additional examples of this restoration, for saturated
signal and for raging biased signal, are shown inFig. 5.

4. Experimental

We have examined our algorithm using data collected
by the MOSESII eNose[5] with two sensor modules: an

eight-sensor quartz-microbalance (QMB) module, and an
eight-sensor metal-oxide (MOX) module. The samples were
put in 20-ml vials in an HP7694 headspace sampler, which
heated them to 40◦C and injected the headspace content
into MOSESII. There, the analyte was first introduced into
the QMB chamber, whence it followed to the 300◦C heated
MOX chamber. The injection lasts for 30 s, and is followed
by a 15 min purging phase using synthetic air.

5. Results

We have tested two different aspects of our restoration
algorithm: How accurate it is, and how much it improves the
usability of the dataset. These two issues will be discussed
in the next two subsections.

5.1. The accuracy of the restoration

The accuracy of the restoration was measured by arti-
ficially clipping uncorrupted signals, and then comparing
the original signals with the restored ones. A restoration
was defined as successful if the comparison resulted in less
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Fig. 6. Comparison between artificially clipped signal (withc = 50%)
and its restoration.

than a 10% difference in the signal heights (a typical STD
value of MOSESII), and more than 0.99 in theR2 test for
goodness-of-fit. The clipping was performed by removing
from the signal all points abovec% of the signal’s height.
After altering c, we concluded that the restoration is suc-
cessful wheneverc≥ 50%. An example of such a restoration
for a 50% clipping is shown inFig. 6.

5.2. The effect on stimuli discrimination

Usually, the accuracy of the restoration is not very impor-
tant. For classification tasks, which are by far the most pop-
ular form of analysis carried out with eNoses, consistency
is much more critical. In our context, consistency means
that applying the restoration algorithm on two different mea-
surements of the same stimulus should end up with similar
restored signals, which in turn should be sufficiently differ-

Fig. 7. Two-dimensional PCA projection of (a) the original dataset (before restoration) and (b) the restored dataset. Here, the measurements of isoamyl
formate, 2,3-hexanedione and 3,4-hexanedione are indicated by dark, light and hollow dots, respectively.

ent from the restored signals of another stimulus. In other
words, a consistent restoration algorithm should give mea-
surements of the same stimulus clustered together, while
keeping clusters of different stimuli sufficiently apart.

To test the consistency of our restoration algorithm,
we have used a small (16 measurements) dataset of
three chemicals—isoamyl formate, 2,3-hexanedione and
3,4-hexanedione—all having about one-third of their sig-
nals corrupted. Using the traditional signal height as a
single feature per sensor, we obtain the two-dimensional
PCA projection of the raw dataset shown inFig. 7a. As
the signal height is susceptible to corruptions, the different
measurements are widely scattered and no clusters can be
isolated. However, if we first apply the restoration algorithm
on the data, and only then use the signal heights as features,
we obtain the two-dimensional PCA projection shown in
Fig. 7b. The effect of the restoration, we must say, is over-
whelming. Actually, it can be quantified by measuring how
well separated are the different clusters in each dataset. To
this end let us define the separability index of a dataset as

I = Tr(SB)

Tr(SW)

HereSW is the average within-cluster covariance matrix (the
average scatter of a cluster), andSB is the between-cluster
covariance matrix (the scatter of the clusters themselves,
where each cluster is represented by its centroid). For more
information on these magnitudes see[6]. The reasoning for
defining this separability index stems from the fact that the
trace of a covariance matrix is proportional to the aver-
age Euclidean distance between the cluster members. Thus,
the higher isI, the denser the clusters, and better is their
separation. The original dataset (before restoration) givesI
= 0.4, while the restored dataset gives an index higher by
two orders of magnitude,I = 47.5. This shows that the ef-
fect of restoration on the discrimination power of an eNose
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is striking, as long as, of course, corruption has been taking
place.

6. Discussion

As far as we know, this is the first time that an algorithm
for handling eNose missing data is proposed. We suggest
a way to restore damaged parts in signals that were cor-
rupted due to limited dynamic range of the measurement
system. The restoration is shown to be pretty accurate, but
more importantly—consistent. Therefore, it enables the us-
age of samples that originally contained corrupted signals
in any data analysis process. This restoration algorithm en-
hances the capabilities of eNoses, allowing them to deal with
broader spectrum of stimuli.
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