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ABSTRACT

An appreciable fraction of introns is thought to be involved

in cellular functions, but there is no obvious way to predict

which specific intron is likely to be functional. For each in-

tron we are given a feature representation that is based on its

evolutionary patterns. For a small subsets of introns we are

also given an indication that they are functional. For all other

introns it is not known whether they are functional or not.

Our task is to estimate what fraction of introns are functional

and, how likely it is that each individual intron is functional.

We define a probabilistic classification model that treats the

given functionality labels as noisy versions of labels created

by a Deep Neural Network model. The maximum-likelihood

model parameters are found by utilizing the Expectation-

Maximization algorithm. We show that roughly 80% of the

functional introns are still not recognized as such, and that

roughly a third of all introns are functional.

Index Terms— intron function, uncertain labels, noisy

labels, Semi-supervised

1. INTRODUCTION

Most human genes are built from protein-coding segments

intervened by noncoding elements known as introns [1].

Whereas many introns probably spread throughout eukary-

otic genomes as slightly deleterious elements, there are many

documented instances of introns that carry out critical cellu-

lar functions [2]. Many intronic functions relate to mRNA

processing, but also to mRNA shuttling, quality control, and

more [2]. This makes the identification of functional introns

a fundamental issue in functional genomics, that may be im-

perative to our understanding of cellular processes and dis-

ease [3]. However, currently there is no general method to

tell functional introns from non-functional ones, and all func-

tional introns have been identified based on anecdotal studies.

As a result, there is a relatively small subset of introns that are

known to be functional. It is not known whether the other in-

trons are functional or not [4].

This study was design to assist genomics researchers de-

veloping a tool that can determine which introns are likely to

be functional, despite the fact that their functionality has not

yet been discovered. We propose a framework that accounts

for the inherent uncertainty in the functionality label of in-

trons that have not been yet documented as functional. We

view introns which are not known to be functional as train-

ing examples with an unreliable or noisy label. We thus con-

sider the task of identification of functional introns as a task

of training a classifier based on noisy labels.

Whereas noise tolerant variants have been proposed for

classical machine learning classifiers [5][6], there are not

many studies that have attempted to address the problem of

training deep neural networks algorithms with unreliable la-

bels [7][8][9][10]. Grandvalet et al. [11] tackled the prob-

lem of missing labels in the training set as an extreme case

of noisy label data. They proposed a semi-supervised algo-

rithm that rewards the model to predict the unsupervised data

with high confidence by adding a entropy regularization term

in the optimization function. Natarajan and Dhilon [12] sug-

gested a universal unbiased estimator for binary classification

with noisy labels. They developed an alternative cost function

expressed by a weighted average of the original cost func-

tion, and supplied upper and lower bounds for performance

criterion. Sukhbaatar at al. [10] suggested adding a regular-

ized linear layer on the top of the softmax layer, and made

strong assumptions in order to prove that the proposed noisy

layer can be viewed as the transition matrix between the true

and observed data labels. Larsen et al. simplified the noise

model by assuming a single noise parameter that can be es-

timated by performing a cross validation procedure. Gold-

berger and Ben-Reuven [13] suggested a training procedure

based on adding another softmax layer to the network, that

uses the output of the last hidden layer of the network to pre-

dict the probability of the label being flipped. Bekker [7] and

Mnih [8] proposed a noise model that depends on the true la-

bel. However, they did not consider the unique structure of the

noisy channel defined by the biological data presented here.
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Fig. 1. Illustration of the parameters of the noisy label model.

Our approach explicitly models the intron functionality un-

certainty by learning an intron functionality neural-network

classifier that takes into account this uncertainty by adding

an extra restricted noisy channel concatenated on top of the

regular soft-max output layer.

The rest of the paper is organized as follows. First we

derive the algorithm that we use to predict which intron is

prone to be functional. Then we describe the data used in our

experiments and then we present the obtained results and the

evaluation method we applied.

2. TRAINING A DEEP NEURAL NETWORK WITH A
RESTRICTED NOISY CHANNEL

Our dataset consists of introns that are known to be functional

and introns which may be either functional or not. Since an

intron with an unknown functionality might actually be func-

tional, we approach this classification task as a classification

model with noisy observed labels. In our model we assume

that the true functionality label of the intron is not directly

observed. Instead we only observe a noisy version of it. We

first describe a probabilistic deep neural net model with noisy

labels and then explain how the model is applied to our intron

functionality discovery task.

2.1. A Deep Neural Network with a Noisy Channel

Assume we are given a binary classification problem with la-

bels denoted by 0 and 1. In a neural net model with parameter-

set w, the probability of input x being labeled as 1 is:

p(y = 1|x;w) = σ(w�
o h(x) + bo) = g(x;w) (1)

where we denote the non-linear function applied to the input

x by h = h(x), σ() is the sigmoid function and wo, bo are the

parameters of the output soft-max layer.

We further assume that in the training process we can-

not directly observe label y. Instead we can only observe a

noisy version of it, denoted by z. In our case y is the cor-

rect information whether the intron is functional (y = 1) or

not (y = 0). The binary label z indicates whether we know

that the intron is functional (z = 1) or not (z = 0). Note

that if we know that the intron is functional then, of course, it

is indeed functional. However, if we have no information on

the intron’s functionality (i.e. z = 0) the intron can be either

functional or not. Below we assume a simplified noise model

where the noisy label is a stochastic function only of the true

label. Formally, the noise model is defined by a parameter-set

θ such that θij = p(z = j|y = i) is the probability of observ-

ing label j given that the true label is i (see Figure 1).

The combined neural-net model with noisy labels, there-

fore, is:

p(z = j|x;w, θ) =
∑

i=0,1

p(z = j|y = i; θ)p(y = i|x;w)

= θ1jg(x;w) + θ0j(1− g(x;w)). (2)

The model is illustrated in Figure 2.

Neural-Network

w

noisy channel

θ

x y z

Fig. 2. The network architecture for producing estimation of

the observed noisy labels.

Assume we are given n feature vectors x1, ..., xn with

corresponding noisy binary labels z1, ..., zn which are viewed

as noisy versions of the hidden labels y1, ..., yn. The log-

likelihood function of the model parameters is:

l(w, θ) =
∑

t

log p(zt|xt; θ, w) = (3)

∑

t

log
∑

i

(p(zt|yt = i; θ)p(yt = i|xt;w)).

The goal of the training procedure is to find the noise pa-

rameter θ and the neural-net set of parameters w that max-

imizes the likelihood function. Since the random variables

y1, ...yn are hidden, to solve this maximization problem we

need to apply the Expectation-Maximization (EM) algorithm

[14]. The EM auxiliary function is:

Q(w, θ, w0, θ0) (4)

=
∑

t

Ep(yt|zt,xt;w0,θ0) log p(zt, yt|xt;w, θ)

=
∑

t

∑

i=0,1

cti(log p(zt|yt = i; θ) + log p(yt = i|xt;w))

= L1(θ) + L2(w)

where θ0 and w0 are the current parameter values and

cti = p(yt = i|zt, xt;w0, θ0)

is the posterior distribution of the true label yt given the fea-

ture vector xt and the noisy label zt. Given the auxiliary func-

tion, we can easily derive the steps of the EM algorithm.

E-step:
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For each t = 1, ..., n and i = 0, 1 compute:

cti = p(yt = i|zt, xt;w0, θ0) (5)

=
θ0(i, zt)p(yt = i|xt;w0)∑

k=0,1 θ0(k, zt)p(yt = k|xt;w0)
.

The probability cti is an estimation of the hidden label yt
given the feature vectors xt and the noisy label zt, based on

the current parameter values θ0 and w0.

M-step:

Based on the EM auxiliary function in equation (4), to

find the updated values of the noise parameter θ we need to

maximize the following function:

L1(θ) =
∑

t

∑

i,j

1{zt=j}cti log θij . (6)

such that θij ≥ 0 and θ00 + θ01 = θ10 + θ11 = 1. This

maximization problem has a closed form solution. It can be

verified that the updated θ is:

θij =

∑
t cti1{zt=j}∑

t cti
i = 0, 1 j = 0, 1 (7)

To find the updated parameter w we need to maximize the

following objective function:

L2(w) =
∑

t

∑

i

ctip(yt = i|xt, w) (8)

=
∑

t

ct0 log(1− g(xt;w)) + ct1 log(g(xt;w)).

This is actually a weighted version of the score function of a

binary classification neural net. We can optimize this neural

network using the standard back propagation algorithm. The

partial derivatives of the score function with respect to the

sigmoid output parameters are:

dL2(w)

dwo
=

∑

t

h(xt)g(h(xt);w)− ct1) (9)

=
∑

t

h(xt)(p(yt = 1|xt)− p(yt = 1|xt, zt))

and
dL2(w)

dbo
=

∑

t

(g(h(xt);w)− ct1) (10)

=
∑

t

(p(yt = 1|xt)− p(yt = 1|xt, zt)).

Table 1. The Restricted Noisy Labels Network (RNLN) al-

gorithm.

Input: Intron feature vectors x1, ..., xn ∈ Rd with corre-

sponding intron functionality labels z1, ..., zn ∈ {0, 1}.
Output: Neural-network parameters w and noise param-

eters θ.

The EM Algorithm iterates between the two steps:

E-step: Estimate true labels based on the current

parameter values (5):

cti = p(yt = i|xt, zt;w, θ)

M-step: Update the noise parameter θ:

θ = θ1,1 =

∑
t ct11{zt=1}∑

t ct1

and train a NN to find a parameter-set w that maximizes

the following objective function:

L2(w) =
∑

t

(ct0 log(1− g(xt;w)) + ct1 log(g(xt;w))).

2.2. A Neural Network for Identification of functional In-
trons

The model described above is suitable for the general case

of training a network based on noisy labels. In our intron

dataset the feature vectors x are the evolutionary history pat-

terns of the intron. The true unobserved binary intron label

is either 1-functional or 0-nonfunctional. The noise here has

a specific structure based on biological fact that for some in-

trons their functionality has been determined and therefore we

know that their label is 1. For all other introns their labels are

currently unknown. Using the notation defined above, in our

case we assume that θ00 = 1 − θ01 = 1. In other words, an

intron whose true label is no-function is never reported as a

functional intron and therefore our noisy channel is restricted

since only 3 of 4 transitions are allowed. We are actually left

with a single noise parameter θ = θ11 = 1 − θ10. The pa-

rameter θ11 is the probability that a functional intron has a

known functionality, i.e., that is indeed reported as functional

intron. The noisy channel in our case is illustrated in Fig-

ure 3. Therefore, the noise parameter update in the M-step is

simplified to:

θ = θ11 =

∑
t ct11{zt=1}∑

t ct1
. (11)

Both EM and back-prorogation algorithms are iterative

methods and we can alternate between them. Therefore there
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Table 2. Feature description.

Feature Description Feature Type

LOGLIKE The likelihood of observing the presence-absence pattern of the intron,

based on the EREM model [15]

Continuous

In AMPHIBIANS This feature is 1 if the intron is present in at least one amphibian Binary

IN FISH This feature is 1 if the intron is present in at least one fish Binary

IN BIRDS This feature is 1 if the intron is present in G. gallus Binary

IN FUNGI This feature is 1 if the intron is present in at least one fungus Binary

IN PLANTS This feature is 1 if the intron is present in at least one plant Binary

IN PROTIST This feature is 1 if the intron is present in at least one protist Binary

SANKOFF G3L1 The minimum number of intron gain and loss events required to explain

the intron’s presence-absence pattern, based on weighted-parsimony

where gains cost three times as much as losses

Discrete

SANKOFF G1L3 The minimum number of intron gain and loss events required to explain

the intron presence-absence pattern, based on weighted-parsimony

where losses cost three times as much as gains

Discrete

LCA AGE The age [in million of years] of the last common ancestor (LCA) of all

intron-bearing species

Discrete

MED REL POSITION The median distance of the exon-exon junction from the beginning of

the coding sequence (CDS) divided by the CDS length

Discrete

MED POSITION The median distance of the exon-exon junction from the beginning of

the CDS [nucleotides]

Discrete

ONES RATIO KNOWN The number of 1s divided by the total number of 1s and 0s in the intron

presence-absence pattern

Discrete

0 0

1 1

1

θ

1−θ

Fig. 3. A diagram of the restricted noise model in the intron

functionality data in which not all transitions are allowed.

is no need to fully optimize the NN model at each M-step iter-

ation. We can use standard methods for neural-network train-

ing and update the noise parameter θ after a few epochs over

the training data. The EM algorithm is known to be a greedy

optimization procedure and therefore prone to be sensitive to

the starting point. Smart initialization of the model parame-

ters is crucial in order to achieve good results. We used the

following strategy to initialize our algorithm. First we trained

our neural net assuming the introns with unknown function-

ality actually have a non-functional label, thus assuming we

have clean labeled data. The obtained NN parameters set w
is then used as an initial value for the first EM iteration. Then

we computed the probability that each intron in the training

data is functional based on the obtained model and use it as

an initial value for the noise parameter set θ:

θ = θ11 =

∑
t 1{zt=1}p(yt = 1|xt;w)∑

t p(yt = 1|xt;w)
.

The proposed method, which we dub the Restricted Noisy La-

bels Network (RNLN) algorithm, is summarized in Table 1.

Table 3. Data distribution
Functional Unknown

No. of introns 243 6180

Percent 3.7% 96.3%

3. EXPERIMENTS

3.1. The dataset

The dataset is consisted of 6423 introns, for which the labels

of 243 are already known to be functional and the labels of

the emaining 6180 introns are unknown since no functionality

has been found for them, see Table 3. Our research objective

was to estimate what fraction of the introns are functional and

moreover to determine whether each intron is functional or

not.
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Each intron is represented by 13 features that are com-

puted using the evolutionary history patterns of the intron [2].

These features are listed in Table 2:

3.2. Results

We first applied unsupervised data embedding into the 2D

plane using linear embedding. The functional introns, labeled

as blue dots, were well clustered, as shown in Figure 4. This

indicates that the features are indeed relevant and informative

for our intron functionality classification task.

Next we applied the proposed algorithm described in the

previous section. We trained the network with 2 hidden layers

with 8 and 5 neuron each and used the ReLU activation func-

tion. We applied a regular SGD learning scheme to train the

network. Once we applied our algorithm we obtained the es-

timated (soft) labels of the introns: p(yt = i|zt, wt; θ, w). By

applying a threshold we converted the probabilities into a bi-

nary decision. Figure 5 shows the same 2D embedding where

the introns that were classified as functional are shown as blue

dots. As seen in Figures 4 and 5, the green dots in the origi-

nal datasets whose 2D embedding was close to the cluster of

functional introns were classified as functional, whereas the

green cluster remained at 99%,suggesting that our algorithm

is consistent with the unsupervised representations obtained

by the PCA algorithm.

Validation-Test To validate our model we performed a 3

folds cross-validation. We divided our data into 3 folds, each

one contained the same functional to non-functional ratio dis-

tribution as the complete data-set. We learned the model 3

times, each time with two-thirds of the data, and tested in the

remaining third. Since in our data we only know the label of

the functional-introns, we could only test the functional ones

and obtained a 99% success rate.

Fig. 4. 2-D PCA embedding of the (noisy) labeled data. The

blue dots represent the introns known to be functional

Fig. 5. 2-D PCA embedding of the classification results. The

blue dots represent introns that were classified as functional

by our algorithm.

Fig. 6. The likelihood as a function of θ11. It can be clearly

seen that the maximum likelihood is achieved for θ11 = 0.11,

i.e. only 11% of the introns that are really functional are cur-

rently known to be functional in the dataset we used.

3.3. Parameter Analysis

We next analyse the parameters learned by the model and de-

scribe their biological interpretation. we first found the value

of the single noise parameter θ11. For each possible value of

θ11 we computed the maximum likelihood value where the

maximization was done over the network parameter-set w.

Denote l(θ) = maxw l(w, θ) where l(w, θ) is the likelihood

function defined in Eq. (3). In Figure 6 we plot l(θ11) as a

function of the noise parameter θ11. It can be seen the there

is a clear single maximum point θ11 = 0.11. This means that

only 11% of the introns that ae really functional were cur-

rently known to be functional in the dataset we used.

Another interesting quantity is the probability that an un-

labeled intron has a functionality. This can be computed using
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Fig. 7. The likelihood as a function of p(y = 1|z = 0). It can

be seen the maximum likelihood is achieved in p(y = 1|z =
0) = 0.33, i.e., 33% of the unlabeled introns actually have a

functionality that have yet to be discovered.

Bayes rule:

P (y = i|z = j) =
p(z = j|y = i)p(y = i)

p(z = j)
=

θijp(y = i)

p(z = j)

where p(z = j) can be obtained directly from the data and

p(y = i) can be estimated as follows:

p̂(y = i) =
1

n

∑

t

p(yt = i|xt, zt).

Using the maximum likelihood parameters, we found that

p(y = 1|z = 0) = 0.33, i.e., 33% of the unlabeled introns

actually have a functionality that we didn’t discovered yet. In

Figure 7 we show the model likelihood function as a function

of the probability p(y = 1|z = 0). For each value of θ11 we

trained the network and then computed both the likelihood

and p(y = 1|z = 0). This provided points in the 2D plane

that are shown in Figure 7.

4. CONCLUSION

In this study we developed a method to identify which introns

are functional based on 13 features that represent the evolu-

tionary history of each intron. We proposed a Deep Learning

Restricted Noisy labels model and applied it to solving this

semi-supervised classification problem. Based on our model

we predicted that a major part of all functional introns have

yet to be discovered and we supported this hypothesis by suc-

cessfully predicting 99% of the known functional introns in a

validation set.
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