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Abstract 

Studying premortem DNA methylation from ancient DNA (aDNA) provides a proxy for ancient gene activity patterns, and hence valuable infor- 
mation on e v olutionary changes in gene regulation. Due to st atistical limit ations, current methods to reconstruct aDNA methylation maps are 
constrained to high-co v erage shotgun samples, which comprise a small minority of a v ailable ancient samples. Most samples are sequenced 
using in-situ hybridization capture sequencing which targets a predefined set of genomic positions. Here, w e de v elop methods to reconstruct 
aDNA methylation maps of samples that were not sequenced using high-coverage shotgun sequencing, by way of pooling together individuals 
to obtain a DNA methylation map that is characteristic of a population. We show that the resulting DNA methylation maps capture meaningful 
biological information and allow for the detection of differential methylation across populations. We offer guidelines on how to carry out com- 
parative studies involving ancient populations, and how to control the rate of falsely discovered differentially methylated regions. The ability to 
reconstruct DNA methylation maps of past populations allows for the development of a whole new frontier in paleoepigenetic research, tracing 
DNA methylation changes throughout human history, using data from thousands of ancient samples. 
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Introduction 

The ability to computationally reconstruct premortem DNA
methylation maps in ancient humans ( 1–3 ) provided a use-
ful tool to identify evolutionary changes in gene regula-
tion. This opened up the field of paleoepigenetics ( 4 ,5 ) that
was used to study regulatory changes that underlie pheno-
typic adaptations in humans. For example, comparing DNA
methylation across human groups led to the identification of
Received: January 11, 2023. Revised: December 9, 2023. Editorial Decision: Dece
© The Author(s) 2024. Published by Oxford University Press on behalf of Nuclei
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roughly 3000 differentially methylated regions (DMRs) sep- 
arating Neanderthals, Denisovans, and modern humans ( 3 ).
Analysis of these DMRs revealed that the vocal and facial 
anatomy is derived in modern humans and differs from that 
in Neanderthals and Denisovans ( 3 ). These DMRs were also 

used to predict anatomical features of the Denisovan, whose 
physical appearance has not yet been recovered in the fossil 
record ( 6 ). 
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ons Attribution License (http: // creativecommons.org / licenses / by / 4.0 / ), 
provided the original work is properly cited. 

https://doi.org/10.1093/nar/gkad1232
https://orcid.org/0000-0003-4777-986X
https://orcid.org/0000-0003-0225-8550


Nucleic Acids Research , 2024, Vol. 52, No. 4 1603 

 

t  

(  

c  

i  

f  

i  

S  

t  

a  

a  

f  

t  

s  

b  

o  

m  

a  

f
 

h  

c  

q  

s  

t  

a  

I  

f  

h  

o  

p  

p  

w  

S  

3  

(  

o  

m  

(  

u  

a  

a
 

e  

c  

s  

D  

v  

s  

t  

m  

p  

u  

i  

a  

e
 

m  

t  

l  

p  

o  

a  

 

 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/4/1602/7585666 by guest on 07 M

arch 2024
The reconstruction method utilizes the fact that deamina-
ion, the predominant chemical decay process in ancient DNA
aDNA), works differently on methylated and unmethylated
ytosines, turning the former into thymines and the latter
nto uracils ( 7 ). aDNA typically consists of double-stranded
ragments with short single-stranded overhangs. The deam-
nation rate varies substantially between these two regions.
ingle-stranded DNA can exhibit deamination rates as high as
ens of percentages, while double-stranded DNA shows rates
round 1% or lower ( 8 ). The overall average deamination rate
cross a fragment, when considering both regions, typically
alls within the range of 1–3% ( 1 ,3 ). aDNA library prepara-
ion protocols that use full or partial USER (User Specific Exci-
ion Reagent) treatment trim the molecules at uracil positions
ut do not process thymines ( 7 ,9 ). This enables the fraction
f thymines in positions where cytosines can be potentially
ethylated (CpG positions, where cytosines are followed by
 guanine), known as the C → T ratio, to be used as a proxy
or premortem DNA methylation level ( 1 ,2 ). 

Paleoepigenetics holds great promise to shed new light on
uman evolution, but its applicability is limited because the re-
onstruction of aDNA methylation maps requires shotgun se-
uencing with a coverage of at least ∼15x. Such high-coverage
amples, which also went through USER treatment, are rela-
ively rare and comprise a Neanderthal ( 10 ), a Denisovan ( 11 ),
nd a few anatomically modern humans (AMHs) ( 3 , 12 , 13 ).
n particular, reconstructing aDNA methylation is infeasible
or the thousands of individuals sequenced using in-solution
ybridization capture, which is the most widely used technol-
gy in the aDNA field. Hybridization capture probes target
re-determined loci, usually a large set of single-nucleotide
olymorphic sites (SNPs). The most popular probe set used
ith aDNA is known as the 1240K set, targeting 1233013

NPs and designed as a merger of the 390k set (targeting
94 577 SNPs) ( 14 ) and the 840k set (targeting 842 630 SNPs)
 15 ). Hybridization capture enabled low-coverage sequencing
f thousands of ancient individuals and was shown to provide
uch information on demographic events in past populations

 16–18 ). Many key populations have been deeply investigated
sing 1240K hybridization capture, including the Neolithic
nd Bronze Age Europe ( 19 ), pre-contact Caribbeans ( 20 ,21 ),
nd Bronze Age Levant ( 22 ). 

Here we show that although samples sequenced to low cov-
rage using hybridization capture are unamenable to the re-
onstruction of DNA methylation, a combination of several
amples from the same population can still provide a useful
NA methylation map. The key to our approach is the obser-

ation that DNA methylation patterns of individuals from the
ame population are more similar than DNA methylation pat-
erns of individuals from different populations ( 23 ,24 ). This
eans that populations have characteristic DNA methylation
rofiles, in a similar way by which genetic profiles of pop-
lations can be defined based on genotypes. The differences
n DNA methylation profiles between populations represent
 combination of genotype differences, differences in shared
nvironment and lifestyle, and random effects ( 25–28 ). 

Instead of reconstructing individual DNA methylation
aps, we develop here a method that pools samples together

o obtain DNA methylation maps that represent entire popu-
ations. Combining the facts that each position may be sam-
led by multiple individuals, that each probe targets a region
f approximately 100 base pairs around the target site ( 14 ,15 ),
nd that off-target sequences that capture non-target genomic
regions are common, we show that the number of sampled
ancient individuals in current studies is sufficient to provide
a reliable reconstruction of genome-wide DNA methylation.
We demonstrate the method on seven ancient populations and
show that population-wise comparisons provide meaningful
information and can be used to trace changes in DNA methy-
lation throughout human history. 

Materials and methods 

Computation of C → T ratio 

Reconstruction of DNA methylation proceeded according to
the method described in Gokhman et al. ( 3 ), which is based on
evaluating the C → T ratio in a position i as t i / ( t i + c i ) , where
 i and c i are the counts of thymines and cytosines, respectively,

in that position. 

Filtering out CpG positions 

To remove possible PCR duplicates, coverage histogram was
computed per chromosome per sample. After smoothing the
histogram using a running window of length 5, we set the cov-
erage threshold as the first coverage for which the histogram
count was one or less, and then removed from the analysis all
positions with coverage equal to or greater than the threshold.

CpG positions with a high rate of C → T ratio are likely
to represent mutations rather than postmortem degradation.
To filter them out, we removed positions whose C → T ratio
exceeded 0.25 ( 1 ). 

Determining window size 

We collect statistics on the t’s and n ’s in a window of size W .
Let C be the effective coverage. 

We require that the probability of observing a total of zero
’s in the window for a minimum methylation level m 0 is less

than p 0 . This translates into 

Pr ( t = 0 ) = ( 1 − πm 0 ) 
n < p 0 . 

Taking log of both sides we get 

n · ln ( 1 − πm 0 ) < ln p 0 , 

meaning that we have to have a minimum accumulated cov-
erage of 

n > 

ln p 0 

ln ( 1 − πm 0 ) 

in the window. If the window is covered by the average effec-
tive coverage, then n = W C. This translates into the following
window size: 

W = � 1 

C 

· ln p 0 

ln ( 1 − πm 0 ) 
� . 

Methylation in pooled samples 

We tested two pooling procedures. For both, let us have N
samples, indexed by i = 1 , . . . , N, and let us index the CpG
positions by j. 

Naïve pooling: Let c i j and t i j count the number of cytosines
and thymines, respectively, at position j in sample i . After
pooling, the counts in this position are defined as the sum of
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counts in all samples, 

c j = 

N ∑ 

i =1 

c i j , t i = 

N ∑ 

i =1 

t i j . 

Note that each sample has the same weight, regardless of
potential difference in deamination rates or sequencing qual-
ity. After pooling, processing continues as if it were a regular
single sample ( 3 ). 

We used C → T ratio values to estimate methylation
through the application of histogram matching ( 29 ). In
essence, histogram matching is a technique that takes two
datasets, called the signal and the reference , and devises a
nonlinear transformation that—once applied to the signal—
adjusts its histogram to be as close as possible to that of the
reference. Let H i , i = 1 , . . . , n be the cumulative histogram of
the reference and h j , j = 1 , . . . , m be the original cumulative
histogram of the signal. Let B i be the values of the bins for
histogram H, and b j be the values of the bins for histogram
h . Then, we would like to find a transformation t such that
b 

′ 
j = t( b j ) , and the cumulative histogram of the transformed

signal, h 

′ , is as similar as possible to H. For each j = 1 , . . . , m ,
we find the index i 0 where H is most similar to h , namely 

i 0 = arg min | H i − h j | . 

Then, the transformation t is defined as 

t( b j ) = B i 0 . 

To this end, we computed the nonlinear transformation of
the C → T values that would produce a histogram that is
as close as possible to a target histogram of measured DNA
methylation in modern human bone (Bone2). 

Advanced pooling: Let us consider a window around posi-
tion j, which contains in individual i a set P i j of informative
CpG sites. We assume that | P i j | ≥ 1 , otherwise this position is
not further considered. We also assume the window is suffi-
ciently small, such that the methylation level of its CpG sites
in each individual i are similar. Finally, we assume the popu-
lation is homogeneous, and consequently denote the common
methylation value in this window as m j . 

We assume that the observed number of thymine
bases in window j for sample i is binomially distributed,
 i j ∼B ( n i j , m j πi ) , where 

n i j = 

∑ 

p∈ P i j 

n ip 

is the total number of reads covering the CpG positions in the
window ( n ip is the number of reads that cover position p in
individual i ), and πi is the deamination rate of individual i .
The likelihood of individual i is 

L i j = 

(
n i j 

t i j 

) (
m j πi 

)t i j 
(
1 − m j πi 

)n i j −t i j 
, 

and the log-likelihood 

� i j = t i j log 
(
m j πi 

)
+ 

(
n i j − t i j 

)
log 

(
1 − m j πi 

) + B i , 
where B i is a term that is independent of m j . The total log- 
likelihood of all individuals is 

� j = 

N ∑ 

i =1 

t i j log 
(
m j πi 

)

+ 

N ∑ 

i =1 

(
n i j − t i j 

)
log 

(
1 − m j πi 

) + B, 

where B = 

N ∑ 

i =1 
B i is a term independent of m j . The score func- 

tion with respect to m j is: 

d � j 

d m j 
= 

N ∑ 

i =1 

t i j 

m j 
−

N ∑ 

i =1 

(
n i j − t i j 

)
πi 

1 − m j πi 

= 

T j 

m j 
−

N ∑ 

i =1 

(
n i j − t i j 

)
πi 

1 − m j πi 
, 

where 

T j = 

N ∑ 

i =1 

t i j . 

To obtain a maximum likelihood estimator of m j we equate 
the score function to zero and solve using Newton–Raphson.
For this, 

d 

2 � j 

dm 

2 
j 

= − T j 

m 

2 
j 

−
N ∑ 

i =1 

( n i j − t i j ) π2 
i 

( 1 − m j πi ) 
2 . 

Given m 

t 
j is the approximate solution at iteration t, the so- 

lution at iteration t + 1 is given by 

m 

t+1 
j = m 

t 
j −

d �/d m j ( m 

t 
j ) 

d 

2 �/dm 

2 
j ( m 

t 
j ) 

. 

In order to get an initial guess, we may obtain an approxi- 
mated solution using 

1 

1 − m j πi 
≈ 1 + m j πi . 

Hence, 

� j 

d m j 
≈ T j 

m j 
−

N ∑ 

i =1 

( 1 + m j πi )( n i j − t i j ) πi . 

This simplifies into 

d� j 

d m j 
≈ T j 

m j 
−

N ∑ 

i =1 

( n i j − t i j ) πi − m j 

N ∑ 

i =1 

( n i j − t i j ) π2 
i . 

Further approximating by neglecting terms of the order of 
π2 

i , we get 

d� j 

d m j 
≈ T j 

m j 
−

N ∑ 

i =1 

( n i j − t i j ) πi . 

This can be written as 

d� j 

d m j 
≈ T j 

m j 
− N 

π
j + T 

π
j , 
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here 

N 

π
j = 

N ∑ 

i =1 

πi n i j , T 

π
j = 

N ∑ 

i =1 

πi t i j . 

The approximate solution is therefore 

m 

0 
j ≈

T j 

N 

π
j − T 

π
j 

. 

The Fisher information for estimating m j is equal to the
xpectation of the negative second derivative of the log-
ikelihood function, 

I 
(
m j 

) = −E 

( 

d 

2 � j 

dm 

2 
j 

) 

= E 

( 

T j 

m 

2 
j 

) 

+ 

N ∑ 

i =1 

E 

( (
n i j − t i j 

)
π2 

i (
1 − m j πi 

)2 

) 

. 

The empirical Fisher information is the evaluation of this
egative second derivative at the estimated value of the pa-
ameter, and may serve as an approximation of the Fisher in-
ormation, 

ˆ I 
(

ˆ m j 
) = 

( 

T j 

ˆ m 

2 
j 

) 

+ 

N ∑ 

i =1 

(
n i j − t i j 

)
π2 

i (
1 − ˆ m j πi 

)2 , 

here ˆ m j is the estimator obtained from the iterations of the
ewton–Raphson algorithm. The empirical Fisher informa-

ion is computed as part of the implementation of the algo-
ithm. Finally, we may approximate the variance of the esti-
ator via the inverse of the empirical Fisher information: 

V ( ˆ m j ) ≈ 1 / ̂ I ( ˆ m j ) . 

alculating pooled sample deamination rate 

 reference modern bone sample was used for this calculation,
s done in Gokhman et al. ( 3 ). Only CpG positions in which
ethylation in the reference was one were included. 

ethylation in CpG islands and housekeeping 

enes promoters 

e used the cpgIslandExt database for CpG islands ( 30 ,31 ),
nd a list of housekeeping genes ( 32 ), from which we created
 list of promoter intervals (defined from 5000 upstream to
000 downstream of the transcription start site). 

redicting population effective coverage 

e created a simple linear regression model that uses the num-
er of pooled samples and their mean number of autosomal
NP hits as explaining variables, to predict the effective cov-
rage of the pooled cohort. To create the model, we used data
rom the seven cohorts examined in this study. The resulting
quation, obtained with MSE = 0 . 85 and R 

2 = 0 . 99 , is 

E. C = 0 . 2338 · NUM _ SAMPLES 

+5 . 04 · AVG _ SNPS − 31 . 2914 

A reasonable reconstruction can be obtained if the
redicted effective coverage is above a threshold of 12
Figure 2 B). 
Computing correlations between DNA methylation 

maps 

We computed correlations between DNA methylation maps
as was suggested by Loyfer et al . ( 33 ) To this end, the genome
was segmented to regions with roughly constant methylation
and then correlations were computed based on the average
methylation in these regions. 

DMRs filtration model 

To assess the level of false DMRs between two populations, we
generated 10 permutations over the population labels. DMRs
detected for the permutated data are considered false discov-
eries. We scanned different values of � and min_CpGs, and
calculated the FDR per set of parameters by dividing the av-
erage number of DMRs found in the permutations by the ob-
served number ( Supplementary Table S12 ). We chose for fur-
ther analysis parameter sets for which FDR < 0.05. 

Results 

Datasets 

To test our approach to pool together different individuals to
reconstruct DNA methylation maps of ancient populations,
we used seven ancient cohorts, each consisting of at least
20 individuals sequenced using the 1240K hybridization cap-
ture. Each cohort represents a relatively homogeneous popula-
tion, with the individuals coming from similar times and geo-
graphic locations. To avoid intra-population variability due to
the tissue specificity of DNA methylation, the cohorts predom-
inantly include individuals whose DNA was extracted from
petrous bones. Individuals with < 30 000 autosomal SNP hits
were filtered out, as previous work showed that lower cover-
age might compromise inference reliability ( 22 ). 

The seven cohorts are Baqah_BA (21 samples) from
the Middle-to-Late Bronze Age in Baq’ah, Jordan ( 22 );
Cuba_ARC_CER (35 samples) from the Archaic and Ceramic
Ages in Cuba ( 20 ,21 ); British_N (47 samples) from Neolithic
England, Scotland and Wales ( 19 ); British_BA (51 samples)
from Early, Middle and Late Bronze Age England, Scotland
and Wales ( 19 ); Eu_BellBeakers (54 samples) from the Bell
Beakers culture of central Europe ( 19 ); Mongolia_BA_IA (63
samples) from Bronze and Iron Ages Mongolia ( 34 ); and the
Caribbean_CER population (142 samples) from the Ceramic
Age in the Caribbeans ( 20 ) (T able 1 , Supplementary T able S1 ).

Generating population-level ancient methylation 

maps 

We generate a population methylation map by pooling to-
gether individuals from that population. To carry out pool-
ing, we tested two approaches. The first, denoted here as the
naïv e approac h , simply sums up the counts of cytosines and
thymines in each CpG position from all samples. This ap-
proach is computationally fast but ignores potential differ-
ences in deamination rate across the pooled individuals. The
second, denoted here as the advanced approach , is computa-
tionally more involved and does account for differences in
deamination rates between individuals (see Methods). Com-
paring the two methods, we found that the naïve approach
performs better, or at least equally as well ( Supplementary 
Text T1 ). Therefore, hereinafter we will only present results
using the naïve approach . 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
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Table 1. Basic information on the cohorts used in the current study 

Population 
Number of 
individuals Period Region 

Average 
autosomal 
SNP hits 

Average total 
CpG co ver age 

Effective 
Co ver age; 

a v erage total 
CpG co ver age 
(excluding non 
covered CpGs) 

Petrous to 
total ratio 

Female to 
total ratio References 

Caribbean_CER 142 100–1500 CE Caribbean 680 901 33.74 35.69 1.00 0.45 20 
Mongolia_BA_IA 63 3000 BCE-100 CE Mongolia 788 240 22.37 24.16 1.00 0.35 3 4 
Eu_BellBeakers 54 2500–2000 BCE Central 

Europe 
671 619 12.02 14.29 0.98 0.30 19 

British_N 47 4000–2500 BCE UK 632 179 10.25 12.79 0.91 0.36 19 
British_BA 51 2300–800 BCE UK 605 833 9.47 12.00 0.96 0.49 19 
Cuba_ARC_CER 35 1000 BCE - 1500 

CE 
Caribbean 656 432 6.80 9.44 1.00 0.43 20 ,21 

Baqah_BA 21 1550–1150 BCE Southern 
Levant 

685 503 3.56 6.99 1.00 0.48 2 2 

Figure 1. (A) Percentage of CpG sites with co v erage larger than a certain threshold, for each of the pooled cohorts. (B) Percentage of windows 
(genomic regions spanning 31 consecutive CpG positions) with coverage larger than a certain threshold, for each of the pooled cohorts. (C) Average 
co v erage as a function of the distance to the nearest target SNP. 
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Following pooling, filtration proceeds similarly to the orig-
inal reconstruction algorithm ( 1 ), with the main step being
the removal of CpG positions with a C → T ratio above a
threshold of 0.25, as they likely result from mutations and not
deamination. Unlike the original reconstruction algorithm, the
mapping from C → T ratios to methylation was performed by
matching the histogram of the C → T ratios to the histogram
of DNA methylation measured in modern human bone using
whole-genome bisulfite sequencing (WGBS). 

Effective coverage of a population 

We first wished to examine whether pooling produces C → T
counts comparable to those obtained in high-coverage shot-
gun sequences. To this end, we looked at the fraction of CpG
positions whose coverage is above a certain threshold (Fig-
ure 1 A). Given the similar average number of autosomal SNP
hits across the cohorts (Table 1 ), we expect that for a fixed
threshold this fraction would increase with the number of
samples in the cohort. Indeed, in Caribbean_CER, the largest
cohort, 92.1% of the CpG positions are covered by at least
one read, and 31.2% are covered by > 15 reads. In contrast,
in Baqah_BA, the smallest cohort, only 50.6% of the CpG po-
sitions are covered by at least one read, and 5.1% are covered
by more than 15 reads. 

For shotgun sequencing, DNA methylation in a particular
CpG position is reconstructed using information from a win-
dow comprising neighboring CpG positions ( 1 ). Assuming a
shotgun sample with low coverage of 15 ×, the use of win-
dow size of 31 CpG positions—the maximum value allowed
in our reconstruction algorithm – achieves an average total
coverage in the window of 465 ×. We therefore wanted to as- 
sess to what extent pooling achieves similar coverage levels,
by computing the average coverage in windows of 31 con- 
secutive CpG positions (Figure 1 B). For the two largest co- 
horts, Caribbean_CER and Mongolia_BA_IA, 68% and 58% 

of CpG positions, respectively, are amenable to DNA methy- 
lation reconstruction using a window of size 31. This number 
drops to 2% for Baqah_BA ( Supplementary Table S2 ). In com- 
parison, the standard methylation arrays of 450K and EPIC 

(850K) provide information on 1.71% and 3.06% of CpG 

positions, respectively ( 35–37 ). Thus, in all cohorts, except 
Baqah_BA the number of CpG positions whose coverage al- 
lows for reliable reconstruction of aDNA methylation is larger 
than in these popular commercial arrays. A recent study claims 
that even shotgun coverage as low as 10x might suffice to re- 
construct DNA methylation, using windows of up to 50 con- 
secutive CpG positions ( 38 ). Using this estimate, we get that 
75% of Caribbean_CER windows are amendable to recon- 
struction, and 1% of Baqah_BA ( Supplementary Table S2 ).
The two largest cohorts are the only ones for which the com- 
puted optimal window size is lower than 31. The optimal 
window sizes are 21 for Cermaic_CER and 29 for Mongo- 
lia_BA_IA, making 63% and 52% of the windows amenable 
to reconstruction, respectively ( Supplementary Table S2 ). 

To capture the coverage differences between cohorts, we de- 
fine the effective coverage as the average coverage of all CpG 

positions in the genome that are covered at least once (Table 
1 ). Effective coverage should increase with the number of sam- 
ples in a population, and with the average autosomal SNP hits.
In the current study, effective coverage changes monotonically 
with the number of samples, from 35.69 in Caribbean_CER to 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data


Nucleic Acids Research , 2024, Vol. 52, No. 4 1607 

Figure 2. (A) C → T ratio in the pooled samples versus DNA methylation measured in modern human bone. CpGs were binned according to their 
measured methylation level in modern human bone. For each bin, an average C → T ratio was computed. Ust ‘Ishim (shotgun sequencing 42 ×) and the 
Altai Neanderthal (shotgun sequencing 52 ×) were added for comparison. ‘ r ’ denotes the Pearson correlation. (B) Mean methylation as a function of the 
effectiv e co v erage of the sample. Horiz ontal line sho ws mean meth ylation in B one2. 
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.99 in Baqah_BA. For comparison, we examined two high-
overage shotgun sequenced samples, Ust ‘Ishim ( 39 ) and the
ltai Neanderthal ( 10 ), for which we computed effective cov-
rages of 29.73 and 41.5, respectively. 

As hybridization capture targets specific SNPs, we expect to
ee the coverage drops when we move away from the target
ite. To test this, we looked at the mean coverage as a func-
ion of the distance to the nearest target SNP in chromosome
 (Figure 1 C). Indeed, we observed a sharply decreasing curve,
eaching a low plateau for distances above 100 bp, consistent
ith the fact that the hybridization probes target a sequence
f roughly a hundred bases around each target site. The ap-
roximately constant coverage at distances higher than a hun-
red base pairs represents information coming from off-target
equences. 

econstructing DNA methylation of ancient 
opulations 

 → T ratio 

he C → T ratio serves as a proxy for premortem DNA methy-
ation, and has been used for the reconstruction of methy-
ation in ancient samples sequenced using shotgun sequenc-
ng. We wanted to confirm that the C → T ratio computed on
ooled samples may also serve as a proxy for aDNA methyla-
ion. To this end, we divided the CpG positions in the genome
nto ten bins, based on their methylation level in modern hu-
an bone (Bone2 ( 3 )). Then, we computed the average C → T

atio across the positions in a bin, for each of the cohorts. As a
eference, we repeated these computations for Ust ‘Ishim and
he Altai Neanderthal. With the exception of the smallest co-
ort, Baqah_BA, the C → T ratio was monotonically increas-
ng as a function of modern DNA methylation, attesting to its
ppropriateness to serve as the basis for reconstructing pre-
ortem DNA methylation (Figure 2 A, Supplementary Text 2 ).
he nonlinearity between the C → T ratio and the reference
ethylation is accounted for by a histogram matching pro-

edure (see Methods). Moreover, again with the exception of
aqah_BA, the correlation between the C → T ratio and the
inned methylation was in the range 0.86–0.88, similar to the
correlation of 0.92 for the Altai Neanderthal and 0.93 for Ust
‘Ishim. Note that the range of C → T values varies across sam-
ples, due to variations in deamination rates and effective cov-
erages. The outlying characteristics of Baqah_BA are a result
of the small size of this cohort, suggesting that a cohort with
an effective coverage as low as 6.99 provides insufficient infor-
mation on premortem DNA methylation. In the next section,
we will determine a more accurate bound on the minimum ef-
fective coverage required for a reliable reconstruction of DNA
methylation in pooled cohorts. 

The reconstruction algorithm 

As we did for shotgun sequenced samples, we take advantage
of the high correlation in methylation levels between neigh-
boring CpGs ( 40 ) to reduce the standard error of our esti-
mated methylation values. To this end, we define a window of
a fixed number of consecutive CpG positions and estimate the
DNA methylation in a CpG position using information from
all CpG positions in the window centered around it. We set the
size of the window adaptively, based on the effective coverage
of the cohort, but bounding it from above by 31 CpG positions
(see Materials and methods). As mentioned above, all cohorts
reached this upper bound, except for the two with the high-
est effective coverage – Caribbean_CER with a window size of
21, and Mongolia_BA_IA with a window size of 29. The num-
ber of informative CpGs within a window tends to be smaller
in the low-quality samples ( Supplementary Figure S1 ). Pre-
mortem DNA methylation was computed from the C → T ratio
using histogram-matching ( 29 ) to obtain a reconstructed DNA
methylation histogram as similar as possible to that of a ref-
erence histogram in modern bone ( Supplementary Figure S2 ).

About 75% of CpG positions are methylated throughout
the mammalian genome ( 41 ). Specifically, the average methy-
lation in our reference modern human bone is 74.15%. To test
how the different cohorts replicate this characteristic value, we
measured the average methylation per cohort (Figure 2 B). All
populations showed average methylation between 70% and
75%, with the exception of Baqah_BA and Cuba_ARC_CER,
which have the smallest number of samples and the low-
est effective coverage. More generally, the average DNA

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
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Figure 3. (A) DNA methylation in CGIs, housekeeping genes promoters, ALU elements and across the genome. (B) Pearson correlations between the 
reconstructed DNA methylation of Caribbean_CER and Mongolia_BA_IA, and modern DNA methylation in human tissues and cell types. The ancient 
populations cluster with osteoblast. Correlations were computed based on genome segmentation, see Materials and methods. (C) Heatmap of Bone2 
meth ylation v ersus Caribbean_CER meth ylation with 50 bins per axis. Match betw een these tw o meth ylation maps is manifested b y the hot regions 
around high and low methylation levels. (D) Ribbon plots showing measured and reconstructed DNA methylation patterns in two random genomic 
regions. Methylation is color coded from low methylation in green to high methylation in red. 
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methylation of the population is a monotonic increasing func-
tion of the effective coverage, which allowed us to set an effec-
tive coverage of 12 as a minimum threshold for reconstructing
population DNA methylation (Figure 2 B). 

To obtain a quick way to evaluate whether the effective cov-
erage of a cohort is sufficient to allow for the reconstruction
of aDNA methylation, we created a linear model that predicts
the effective coverage of a population based on the number
of individuals in the cohort and the average number of au-
tosomal SNP hits ( Supplementary Table S3 ), two simple and
readily accessible variables. The linear model has MSE = 0 . 85
and R 

2 = 0 . 99 (see Materials and methods). 
To further validate the accuracy of our reconstructed DNA

methylation, we conducted four analyses to assess the sim-
ilarity between our reconstructed DNA methylation maps
and the modern human bone map. First, we measured the
mean methylation in the promoters of housekeeping genes
and within CpG islands (CGIs), two genomic regions that are
known to be strongly hypomethylated ( 42 ). We computed the
average DNA methylation in these regions in our cohorts, as
well as in a modern bone sample and the high-coverage shot-
gun sample Ust’-Ishim (Figure 3 A). As expected, the DNA
methylation within CpG islands and housekeeping gene pro-
moters is significantly lower than the genomic average in all
populations ( Supplementary Table S4 ), with Caribbean_CER
showing trends that most resemble modern DNA methylation.
Similarly, we measured the mean methylation within Alu ele-
ments, which are transposable elements known for their high
density of CpG positions and high methylation ( 43 ). As ex-
pected, the average DNA methylation levels withing these ele-
ments are high, consistent with the levels observed across the 
entire genome (Figure 3 A). 

Next, we computed correlations between the reconstructed 

pooled DNA methylation maps of the cohorts and the mea- 
sured maps in several human tissues and cell types, includ- 
ing osteoblasts ( 33 ). As expected, given the skeletal origin 

of aDNA, our populations showed the greatest resemblance 
to osteoblast (Figure 3 B). We then further demonstrated the 
match between the reconstructed pooled methylation and 

bone methylation by generating heatmaps that compare the 
histograms of Bone2 and the reconstructed cohort methyla- 
tion (Figure 3 C). Finally, we produced ribbon plots for ran- 
dom genomic segments, offering a visual testament of the high 

quality of the reconstructed methylation, particularly for co- 
horts with sufficiently high effective coverage (Figure 3 D). 

DMRs detection 

Methylation in known DMRs 
In a previous study based on reconstructed DNA methylation 

in high-coverage shotgun samples, we identified 873 differ- 
entially methylated regions (DMRs) that are derived in mod- 
ern humans, meaning that the methylation change occurred 

in the lineage leading to modern humans after they split from 

Neanderthals and Denisovans (archaic humans) ( 3 ). To fur- 
ther validate the quality of the reconstructed DNA methy- 
lation in the seven cohorts, we tested whether the average 
methylation in these DMRs in each of the cohorts is consistent 
with the methylation patterns observed in modern humans.
For each DMR, we measured the distance between its average 
methylation in each of the cohorts and its average methylation 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
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Figure 4. Absolute value of the difference between the a v erage meth ylation in the cohort and the a v erage meth ylation in Ust ‘Ishim, f or the 873 modern 
human-derived DMRs. 
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n Ust’-Ishim. For comparison, we measured these distances
lso for the Altai Neanderthal. Reassuringly, the median of
he distances was around 7% for all cohorts, whereas it was
round 53% for the Altai Neanderthal (Figure 4 ). 

e-no v o detection of DMRs 
e next wished to use the cohort DNA methylation profiles

o detect DMRs separating modern and archaic humans and
ompare them to DMRs detected using high-coverage shot-
un samples ( 3 ). For this, we first ran the DMR detection algo-
ithm for each of the cohorts, excluding Cuba_ARC_CER and
aqah_BA, which have the lowest effective coverage, against a
roup of archaic humans consisting of the Altai Neanderthal
 10 ) and a Denisovan ( 11 ). We then reran the DMR detec-
ion algorithm comparing a group of high-coverage shotgun
amples of anatomically modern humans to the same group of
rchaic humans. The group of anatomically modern humans
ncluded SF12 ( 12 ) (Sweden, 9033–8757 before present (BP),
emur, 73.0 ×), I1 583 ( 3 ) (Turkey, ∼8500 BP, petrous, 32.3 ×),
allito Bay A ( 13 ) (South Africa, 2000–1960 BP, petrous,
4.3 ×) and Eland Cave ( 13 ) (South Africa, 510–450 BP, tibia,
1.8 ×). Based on the high quality of the shotgun samples, we
reated the DMRs detected using them as a reference set of
MRs, to which we compared the DMRs detected using the
ooled cohorts. 
In all comparisons, DMR detection was carried out using

he same set of parameters, including a methylation differ-
nce threshold ( �) of 0.4 and a minimum number of CpG
ositions per DMR of 50 ( 3 ). We divide the DMRs into three
ategories: Shared-DMRs are DMRs detected in both analy-
es; cohort-DMRs are DMRs detected only using the pooled
ohorts and are thus potentially false positives; and shotgun-
MRs are DMRs detected only using the shotgun samples

nd are thus potentially false negatives. Using these approx-
imations, we computed for each cohort the recall and pre-
cision, as well as the F 1-score that combines both measures
( Supplementary Table S5 ). The performance of the DMR de-
tection algorithm highly depends on the quality of the sam-
ples, with Caribbean_CER and Mongolia_BA_IA having the
highest F 1-score. The lower-quality cohorts exhibit lower re-
call and precision due to a large number of false positives and
false negatives, likely due to higher levels of noise in the methy-
lation reconstruction process. Repeating the DMR detection
using all five cohorts pooled together as representing mod-
ern humans, we obtained a mild improvement in recall, preci-
sion and F 1-score ( Supplementary Table S5 ). 

To reduce the number of false positives, we sought to fur-
ther filter the DMRs detected using the pooled cohorts. To
this end, we characterized each DMR by six features: its to-
tal length in bases, its total number of CpG positions, the av-
erage methylation difference between the compared groups
( �), its maximum Q t , its mean coverage and its genomic con-
text (whether it is within a CpG island, gene promoter, or
gene body). For all cohorts and for each feature but �, the
shared-DMRs differed significantly from the cohort-DMRs,
suggesting that these features might be useful in discriminating
shared-DMRs from cohort-DMRs ( Supplementary Table S6 ).
Indeed, we were able to develop a classifier that filters out
DMRs that are likely cohort-DMRs, and by improving pre-
cision on the expense of recall, we were able to consider-
ably reduce false detection of DMRs ( Supplementary Text T3 ,
Supplementary Tables S7 and S8 ). 

Detecting DMRs between populations 

Finally, we wanted to apply the DMR detection pipeline de-
veloped above to identify DMRs separating the different co-
horts. We ran the DMR detection algorithm between pairs
of populations, using � = 0 . 4 and a minimum of 40 CpG

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
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positions within a DMR. These parameters are less strict
than in the previous section, to allow the detection of subtler
DNA methylation changes ( Supplementary Tables S9 and S10 ;
Supplementary Text T4 ). 

When comparing two populations, we reasoned that a bet-
ter way to filter falsely detected DMRs is to carry out permuta-
tions of the population labels, and choosing parameter values
that guarantee a false discovery rate less than a certain thresh-
old (see Materials and methods, Supplementary Table S11 ).
Comparing Mongolia_BA_IA to European populations, we
detected 13 DMRs, which are present in the promoter or gene
body of 13 genes. One of the genes is MEIS1 , which is a major
regulator of limb development, and is associated with myeloid
leukemia. It was shown to be downregulated by promoter
methylation in leukemia ( 44 ), and was also found to have
gone through methylation changes separating modern from
archaic humans ( 1 ). Another example is RUNX2 , which plays
a role in osteoblast differentiation ( 45 ). Comparing Mongo-
lia_BA_IA to Caribbean_CER, we detected two DMRs, and
another two were detected when comparing Caribbean_CER
to European populations. Finally, comparing European popu-
lations to populations of Asian origin (Mongolia_BA_IA and
Caribbean_CER), we found eight DMRs, including one inside
the promoter region of IFITM3 , which encodes an antiviral
protein, and which shows lower methylation in its promoter
in EV71-HFMD (Hand, foot and mouth disease induced by
enterovirus 71) patients ( 46 ). Notably, polymorphism in the
SNP rs12252 within the gene was found to be associated with
susceptibility to COVID-19, and its mutant allele was found
to be highly frequent in East Asian patients and rare in Euro-
pean patients ( 47 ). 

Variation in bone type composition and sex ratio between
cohorts have the potential to introduce confounding factors
affecting the detection of DMRs between populations. Bone
type composition is not a source of concern in our data, as
the vast majority of individuals were sampled from petrous
bones (Table 1 ). However, sex ratio differs between cohorts,
with three showing a bias toward males (Table 1 ). 

Discussion 

Our study has demonstrated that it is possible to reconstruct
aDNA methylation patterns even when high-coverage sam-
ples are not available. Our work is based on the premise
that variability in DNA methylation is lower within, com-
pared to between, populations. We therefore reasoned that
we might reconstruct DNA methylation profile characteris-
tic of a past population by pooling together the DNA se-
quences of a sufficient number of low-coverage ancient indi-
viduals from that population. Indeed, we were able to generate
high-quality methylation maps of past populations that were
later used to detect differential methylation. As the vast ma-
jority of ancient samples are sequenced to low-coverage, our
study expands the scope of aDNA methylation studies, allow-
ing them to consider populations that have so far not been
used. 

The ability to reconstruct DNA methylation of past popula-
tions, and the constantly increasing density of ancient samples
from diverse locations and times, would allow for spatiotem-
poral mapping of changes in DNA methylation. Combined
with the high responsiveness of DNA methylation to environ-
mental cues, such a spatiotemporal mapping would enable the
use of aDNA methylation to study past environments ( 25 ). 
Here, we analyzed seven populations, whose members were 
sequenced using the popular 1240K in-situ hybridization cap- 
ture. However, the methodology we have developed is com- 
pletely general and should work also on samples sequenced 

with different types of hybridization capture sets, as well as 
on low-coverage shotgun samples. 

As expected, a DNA methylation map reconstructed us- 
ing many low-quality samples inherently contains more noise 
compared to a map reconstructed from a high-coverage sam- 
ple. We concluded that to achieve a reliable reconstruction,
the effective coverage of the cohort should be at least 12, but 
preferably exceeding 15. We presented a straightforward re- 
gression model that enables the prediction of the effective cov- 
erage of a cohort prior to downloading the data, based solely 
on the number of samples and the mean number of SNP hits.
This model has the potential for refinement with the future 
inclusion of additional populations. 

The increase in noise is manifested by an increased rate of 
falsely detected DMRs. In the current study, we used two se- 
tups to test the quality of DMR detection using population 

DNA methylation maps, and considered means to reduce the 
number of falsely detected DMRs in both. First, we tried to 

compare a population with high-coverage individuals. In such 

a setup label permutation is infeasible, and we have therefore 
devised a machine-learning algorithm that filters out DMRs 
that are likely false positives. Whereas this allowed for a con- 
siderable improvement in the rate of falsely detected DMRs,
this rate may still be high in some applications, and we gener- 
ally do not recommend using such a setup unless the popula- 
tion is characterized by very high effective coverage. Second,
we compared populations to each other, in an attempt to iden- 
tify DMRs separating the different populations. Here, label 
permutation can be used, and DMR detection parameters can 

be adjusted to achieve a low false discovery rate. We highly 
recommend using population DNA methylation maps in such 

a setup, and the resulting small number of DMRs testify for 
the efficiency by which the number of falsely detected DMRs 
is reduced. For example, contrasting European and Asian pop- 
ulations revealed a DMR within the promoter of IFITM3 , po- 
tentially related to differential viral exposure of these popula- 
tions, and reflecting different frequencies of IFITM3 allele in 

East Asians compared to Europeans. 
Whereas the majority of population studies are based on 

petrous bones, high-coverage samples came from a vari- 
ety of skeletal parts, including tibia and femur. This pro- 
vides further advantage to detecting DMRs separating differ- 
ent populations, rather than DMRs separating populations 
from high-coverage samples, the latter being potentially af- 
fected by biases introduced by the use of different skeletal 
parts. 

It is interesting to note that despite of the fact that naïve 
pooling does not take into account potential differences in 

deamination rate across individuals, it still performs better 
than the advance pooling technique ( Supplementary Text T1 ).
This suggests that differences in deamination rate are small 
compared to other sources of variance between the samples,
especially in light of the fact that individuals from approx- 
imately the same place and time should have gone through 

similar deamination processes. 
It is worth highlighting that in-situ hybridization capture 

sequencing, while designed to target specific genomic posi- 
tions, exhibits notable presence of off-target reads. In fact,
after filtering out reads with low mapping quality, approxi- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1232#supplementary-data
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ately 65% of the covered CpG positions originate from off-
arget reads ( Supplementary Figure S3 ). 
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