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Recent genome analyses revealed intriguing correlations between variables characterizing the functioning

of a gene, such as expression level (EL), connectivity of genetic and protein–protein interaction networks,

and knockout effect, and variables describing gene evolution, such as sequence evolution rate (ER) and

propensity for gene loss. Typically, variables within each of these classes are positively correlated, e.g.

products of highly expressed genes also have a propensity to be involved in many protein–protein

interactions, whereas variables between classes are negatively correlated, e.g. highly expressed genes, on

average, evolve slower than weakly expressed genes. Here, we describe principal component (PC) analysis

of seven genome-related variables and propose biological interpretations for the first three PCs. The first

PC reflects a gene’s ‘importance’, or the ‘status’ of a gene in the genomic community, with positive

contributions from knockout lethality, EL, number of protein–protein interaction partners and the number

of paralogues, and negative contributions from sequence ER and gene loss propensity. The next two PCs

define a plane that seems to reflect the functional and evolutionary plasticity of a gene. Specifically, PC2

can be interpreted as a gene’s ‘adaptability’ whereby genes with high adaptability readily duplicate, have

many genetic interaction partners and tend to be non-essential. PC3 also might reflect the role of a gene in

organismal adaptation albeit with a negative rather than a positive contribution of genetic interactions; we

provisionally designate this PC ‘reactivity’. The interpretation of PC2 and PC3 as measures of a gene’s

plasticity is compatible with the observation that genes with high values of these PCs tend to be expressed

in a condition- or tissue-specific manner. Functional classes of genes substantially vary in status,

adaptability and reactivity, with the highest status characteristic of the translation system and cytoskeletal

proteins, highest adaptability seen in cellular processes and signalling genes, and top reactivity

characteristic of metabolic enzymes.

Keywords: gene expression; gene dispensability; protein–protein interaction; sequence evolution rate;

gene loss; principal component analysis
1. INTRODUCTION
The age of genomics is, arguably, succeeded by an era of

systems biology. Although systems biology defies exact

definitions, it is all about connections between different

parts and characteristics of biological systems at all levels

(Ge et al. 2003; Provart & McCourt 2004; Herbeck & Wall

2005; Medina 2005; Pennisi 2005). The main types of

data produced by genomics are nucleotide and inferred

protein sequences. Comparative analysis of these

sequences yields the values of variables characterizing

genome evolution, such as sequence evolution rate (ER)

and propensity for gene loss (PGL). In the age of systems

biology, a different kind of genome-wide information is

becoming increasingly available, such as gene expression

level (EL), protein–protein interactions, regulatory net-

work structure and the effect of gene knockout on the

organism’s fitness. Collectively, these may be considered

phenotypic variables.

Many large-scale studies examined the connections

between evolutionary and phenotypic variables on the
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premise that phenotypic characteristics of a gene deter-

mine the selective constraints, and forces acting on it

during evolution and, accordingly, affect evolutionary

variables. Nearly 30 years ago, Wilson et al. (1977)

proposed, on general, theoretical grounds, the

‘knockout-rate hypothesis’, i.e. that a negative correlation

should exist between the severity of a gene knockout effect

and sequence ER such that essential genes are predicted to

evolve slowly. Once genome sequences and genome-wide

gene knockout data became available, this conjecture was

tested in numerous empirical studies, some of which

reported the predicted connection whereas other failed to

do so; the outcome apparently depended on methods of

measuring a gene’s dispensability and the organisms

involved (Hurst & Smith 1999; Hirsh & Fraser 2001;

Jordan et al. 2002; Pal et al. 2003). Two recent studies that

examined close-range evolutionary rates approximating

the instantaneous rate and employed advanced statistical

techniques seem to settle the issue, at least for yeasts of the

genus Saccharomyces, by convincingly demonstrating the

reality of the negative correlation between rate and

dispensability, although the magnitude of the effect is

not overwhelming (Wall et al. 2005; Zhang & He 2005).

The majority of these and similar studies examined

pairwise relationships among genome-related variables.
q 2006 The Royal Society
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This way, several highly reliable connections were

revealed, such as the negative correlation between a

gene’s EL and sequence ER (Pal et al. 2001; Krylov

et al. 2003), the perhaps related negative correlation

between a gene’s connectivity in co-expression networks

and ER ( Jordan et al. 2004), and the positive correlation

between sequence ER and PGL (Krylov et al. 2003). Also,

a provocative link has been reported to exist between a

gene’s centrality in protein–protein interaction networks

and the knockout effect: the hubs of the network are

significantly enriched for essential genes ( Jeong et al.

2001). However, some, if not most, of these and other

connections between genome-related variables remain

controversial. In particular, the relevance of the link

between centrality and knockout effect have been

suggested as being explained by hidden biases in the

analysed data; examination of a supposedly unbiased

dataset yielded a marginal correlation at best (Coulomb

et al. 2005; Koonin 2005). Similarly, it remains unclear

whether or not a significant link exists between a gene’s

connectivity in protein–protein interaction networks and

its evolutionary rate. Although the predictable negative

correlation between these variables has been reported

(Fraser et al. 2002, 2003), subsequent re-analysis

suggested that it held only for the most highly connected

proteins, the network hubs ( Jordan et al. 2003), whereas

another study maintained that the connection was an

artefact caused by the effect of protein abundance (Bloom

& Adami 2003). More subtle and potentially interesting

effects also have been reported, such as the apparent

dramatic difference in the strength of the connection with

evolutionary rate for the intramodule and intermodule

hubs of the yeast protein–protein interaction network

(Fraser 2005). The work of Fraser demonstrated that,

while intramodule hubs were, on average, substantially

more conserved in evolution than non-hubs, intermodule

hubs showed only very modest deceleration of evolution.

As a generalization, a direct dependence between a gene’s

‘complexity’ and evolutionary conservation has been

proposed: genes involved in complex processes and

numerous interactions seem to be more conserved in

evolution than less connected genes (Aris-Brosou 2005).

Most of the correlations revealed in the emerging web

of links between genome-related variables are relatively

weak, even if statistically significant. This suggests that

these variables encompass non-overlapping information;

indeed, the independence of the contributions of gene

dispensability and EL to the evolutionary rate of yeast

genes has been recently demonstrated (Ge et al. 2003;

Provart & McCourt 2004; Herbeck & Wall 2005; Medina

2005; Pennisi 2005; Wall et al. 2005). It appears,

therefore, that combined analysis of all these variables

(and others, still undefined ones) is required for better

understanding of the behaviour of the ‘gene community’.

Several studies attempted to examine more than one pair

of variables at a time by using partial correlations

(Bloom & Adami 2003; Rocha & Danchin 2004).

However, to uncover patterns in the web of links, true

multivariate analysis seems to be required.

Here, we present principal component (PC) analysis of

seven genome-related variables and propose biological

interpretations for the first three PCs. The first PC seems

to reflect different aspects of the intuitive notion of a gene’s

‘importance’, or the ‘status’ of a gene in the genomic
Proc. R. Soc. B (2006)
community. The second and third PCs may be interpreted

as reflecting different aspects of a gene’s evolutionary and

functional plasticity.
2. MATERIAL AND METHODS
(a) The dataset

Families of orthologues were from the dataset of clusters of

eukaryotic orthologous groups of genes (KOGs; March

2003) including seven species (Arabidopsis thaliana, Ence-

phalitozoon cuniculi, Saccharomyces cerevisiae, Schizosacchar-

omyces pombe, Caenorhabditis elegans, Drosophila melanogaster

and Homo sapiens; Tatusov et al. 2003; Koonin et al. 2004).

Additionally, proteins from eight species (Oryza sativa,

Dictyostelium discoideum, Neurospora crassa, Magnaporthe

grisea, Candida albicans, Caenorhabditis briggsae, Ciona

intestinalis and Mus musculus) were added to existing

KOGs using the Kognitor method (Tatusov et al. 2003).

Index orthologues (i.e. one representative protein per

organism, with the greatest similarity to the orthologues

from other organisms) were identified in each KOG

(Krylov et al. 2003).

On many occasions, some of the analysed data were

missing for a given KOG, first, because of the lack of the

relevant experimental data and, second, due to the patchy

distribution of genes from different species among KOGs. Of

the 10 058 KOGs, the full complement of the 38 original

variables was available for only 23 KOGs. We employed two

complementary strategies to expand the set of KOGs

available for analysis. First, we combined data of the same

nature into aggregate variables as described later, ending up

with seven variables. Second, we allowed for KOGs that had,

at most, a certain number of missing values. The missing

values were then filled-in by the mean values of the

corresponding variables. With these seven variables, 1482

KOGs had complete data and 4124 KOGs had at most one

missing value. The results in this work were all obtained using

the 4124-KOGs set, but we obtained qualitatively very similar

results for the 1482-KOGs dataset (supplement 5 of the

electronic supplementary material).

(b) Analysis of evolutionary and phenotypic variables

The PGL during evolution (Krylov et al. 2003) was attri-

buted to each KOG on the basis of the phyletic pattern and

the presumed species tree of the original seven eukaryotic

species of the KOG database (figure 4aS of the electronic

supplementary material). Here, we defined the PGL using a

probabilistic evolutionary model based on the Dollo principle

(allows for a single origin and multiple losses during

evolution of any KOG) and accounting for branch-specific

variability. The probability of KOG k to be lost along a

branch of length Dt is assumed to be ft 1KeKqkDt
� �

, where

ft is the branch-specific gene loss propensity and qk is the

PGL of KOG k. In order to estimate the values of qk and ft,

we employed an expectation–maximization algorithm (see

electronic supplementary material for details). The average

number of paralogs (NP) in each KOG was computed from

the original seven-species KOGs dataset.

For evolutionary rate estimation, alignments of index

orthologues within each KOG were obtained using the

MUSCLE program (Edgar 2004); evolutionary distances

between all proteins were computed using PAML program

(Yang 1997), with the Jones–Thornton–Taylor ( JTT)

substitution model adjusted to observed frequencies and the
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Figure 1. Fraction of the total variance captured by each of
the seven PCs.

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

status

ad
ap

ta
bi

lit
y

NPGI

PGLER

EL

PPI

KE

–0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

adaptability

re
ac

tiv
ity

NP

GI

PGL

EL

PPI

KE ER

(a)

(b)

Figure 2. Contributions of the quantitative genome-related
measures to the first three principal components (loadings
plot). (a) First (PC1, horizontal axis) and second (PC2,
vertical axis) principal components. (b) Second (PC2,
horizontal axis) and third (PC3, vertical axis) principal
components. Designation of the variables: EL, expression
level; ER, evolutionary rate; GI, number of genetic inter-
actions; KE, lethal effect of gene knockout; NP, number of
paralogs; PGL, propensity for gene loss; PPI, number of
physical protein–protein interaction partners.
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a parameter of the G-distribution set equal to 1.0. The

minimum distance between proteins from two basal sub-

clades in each set (figure 4bS of the electronic supplementary

material) was taken to represent the divergence within the

clade; the distance between orthologues was used as a

measure of evolutionary rate. The distances within each

clade were normalized by the median distance for this clade,

resulting in a relative rate estimate; relative rates for a given

KOG were averaged between different clades to provide a

KOG-specific estimate of evolutionary rate.

The gene expression data for yeast, Drosophila and human

were downloaded from the UCSC table browser (http://mgc.

ucsc.edu/cgi-bin/hgTables?commandZstart; table 4S of the

electronic supplementary material). Expression scores for

specific probes were matched with genes using the tables

available at USCS; gene sequences were identified with KOG

proteins using BLAST (Altschul et al. 1997). The highest

detected level of expression (among all available experiments)

was taken for each gene; a KOG was represented by the

median expression of its paralogues in each organism. The

logarithms of the ELs for each organism were standardized

(brought to zero mean and unit variance), and the maximal

value among the three species was taken to yield a single EL

per KOG. Skewness coefficients (Ehrenfeld & Littauer 1964)

were computed for the expression profiles.

The protein and gene interaction data for yeast, Drosophila

and C. elegans were downloaded from the GRID web site

(http://biodata.mshri.on.ca/yeast_grid/files/Full_Data_Files/

interactions.txt, http://biodata.mshri.on.ca/fly_grid/files/

Full_Data_Files/interactions.txt and http://biodata.mshri.

on.ca/worm_grid/files/Full_Data_Files/interactions.txt). The

number of genetic and physical interaction partners was

retrieved for each protein; each KOG was represented by the

logarithm of the median value among all paralogues. The

logarithms of the genetic and physical interaction partners for

each organism were standardized, and the maximum value

among the species was taken to yield a single number per KOG.

Gene disruption data for yeast were downloaded from the

MIPS FTP site (ftp://ftpmips.gsf.de/yeast/catalogues/gene_

disruption/gene_disruption_data_06102004); the list con-

tained 1016 genes with a lethal knockout effect. If disruption

of any of the paralogues within a KOG was lethal, the KOG

was assigned a value of 1, otherwise it was assigned the value

of 0. RNAi gene knockout data for C. elegans were taken from

Kamath et al. (2003). Each gene was assigned a value of 1 if it

had any level of embryonic lethality effect, and a value of 0

otherwise. The knockout lethality data for yeast and worm

orthologues were combined by considering a KOG essential if

at least one of its members was lethal upon knockout in either

species.

(c) Robustness of aggregate variables

In order to assess the robustness of the results obtained with

the aggregate variables, we examined the effects of several

modifications to the procedures used to derive these

variables. These include replacing PGL by the raw number

of loss events, taking the KOG’s EL as the maximum among

paralogues (instead of the median), taking the KOG’s

number of interaction partners (both physical and genetic)

as the maximum among paralogues (instead of median),

using a refined (non-binary) version of knockout lethality and

excluding from the analysis genes that were used as baits in

yeast synthetic lethality experiments and therefore might bias

the correlation structure. Neither of these modifications had
Proc. R. Soc. B (2006)
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any qualitative effect on the results of principal component

analysis (PCA; supplement 6 of the electronic supplementary

material).

(d) Dimensionality reduction by PCA

PCA is heavily affected by outliers (Koren & Carmel 2004).

Thus, after standardizing all seven variables, extreme data

points with expectation less than 1 (under the assumption of

normality) were removed. This procedure reduced the

original dataset of 4124 KOGs to 3912 KOGs. The data

were re-standardized after the removal of outliers, and PCA

was performed. The fractional eigenvalues of the correlation

matrix, as well as the first eigenvectors (PCs) are given in

figures 1 and 2, and in supplement 1 of the electronic

supplementary material.
3. RESULTS AND DISCUSSION
(a) The correlation structure

We collected or calculated the values of seven genome-

related variables, namely, fitness effect of gene knockout

experiments (KE), EL, number of genetic interactions

between genes (GI), number of physical interactions

between gene products (PPI), NP, sequence ER and

PGL for 3912 clusters of orthologues eukaryotic genes

(KOGs; Tatusov et al. 2003). The KOGs are a natural

framework for this type of analysis because they readily

allow for estimation of ER and PGL, and also because data

obtained on different model systems can be combined

through the knowledge of orthologues relationships, thus

increasing the number of genes amenable to analysis (see

§2 and electronic supplementary material for details; the

values of the seven variables for each KOG are given in the

electronic supplementary material).

Of the analysed variables, five characterize an organ-

ism’s phenotype (KE, EL, GI, PPI, NP) and two reflect

aspects of evolution (ER, PGL). Examination of the

pairwise correlations between these variables reveals a

clear-cut pattern: the phenotypic and evolutionary vari-

ables form two distinct classes such that variables within a

class tend to be positively correlated whereas variables of

different classes are negatively correlated, with most of the

correlations being statistically significant (table 1). Inverse

trends are detected only for GI, namely, a weak positive

GI–ER correlation and weak negative GI–EL and GI–KE

correlations. Since the majority of the GI data comes from

synthetic lethal studies, genes with a non-zero number of

GI are likely to be non-essential, which seems to explain

the deviation from the general pattern. It is also of note

that NP behaves in full concordance with the rest of the

phenotypic variables although, a priori, there might be

some ambiguity as to whether NP is to be classified as

phenotypic or evolutionary.

Importantly, all the previously established positive

correlations within the phenotypic and evolutionary

classes of variables and the negative correlations between

the variables of different classes held true for the analysed

dataset (table 1). The only significant difference from the

previous results, apart from the addition of new variables,

was that, in the earlier work (Krylov et al. 2003, p. 2671),

we failed to detect a significant negative correlation

between ER and KE (although a marginal trend in this

direction has been seen), whereas in the present work,

such a correlation, weak but significant, has been detected
Proc. R. Soc. B (2006)
(table 1). It appears most likely that the difference is due to

the greater sensitivity of the present analysis, thanks to an

expanded dataset included in the analysis and the more

sophisticated procedure employed for the estimation of

ER. Also, similarly to the previous studies, all observed

correlations were weak to moderate although most of them

reached statistical significance, thanks to the large number

of data points analysed (table 1). This persistent pattern of

weak (even if significant) correlations emphasizes the need

for multivariate analysis in order to elucidate the actual

nature of the interplay between the phenotypic and

evolutionary variables.

An issue of potential concern with respect to the

relatively weak correlations described here and elsewhere

is the potential effect of the procedures used to derive the

aggregate variables (see §2). To eliminate potential

artefacts caused by the specifics of these procedures, we

investigated separately the effects of several alternative

approaches, e.g. transforming KE from a binary to a

continuous variable or replacing the median over

paralogues with the maximum as the measure of EL,

PPI and GI (see §2 and supplement 6 of the electronic

supplementary material for details), on the structure of the

correlation matrix. None of these modifications changed

the sign of any of the significant correlations, and in most

cases, the changes in the magnitude of the correlations

were relatively small (supplement 6 of the electronic

supplementary material).

Thus, to succinctly summarize the current results of

pairwise correlation analysis, genes whose knockout has a

severe effect on fitness, that are highly expressed, have

many protein–protein interaction partners, and many

paralogues have a propensity to evolve slowly, in terms of

both ER and PGL. Conceptually, one may think of these as

‘important’ genes that are subject to strong functional

constraints and, as a result, refractory to evolutionary

change.

(b) Principal component analysis of the genomic

variables: a gene’s status, adaptability and

reactivity

To investigate the relationships between all the analysed

genome-related variables simultaneously, we performed

PCA of the 3912 KOGs in the seven-dimensional space.

Each of the seven PCs accounted for a significant fraction

of the variance in the data, i.e. the contribution of each PC

was non-negligible (figure 1 and figure 1S of the electronic

supplementary material). This shows that none of the

original variables can be represented as a linear combi-

nation of other variables. Furthermore, the PCA results

were found to be highly robust to various modifications of

the data analysis procedures, e.g. replacing PGL with the

raw number of gene losses or using the maximum among

paralogues, instead of the median, to assign a KOG’s EL,

PPI and GI values, as described in detail in §2 and in

supplement 6 of the electronic supplementary material.

The first three PCs captured over one-half (54.8%) of

the total variance in the data (figure 1; table 1S and figure

1S of the electronic supplementary material). The first PC

(PC1), which accounts for 25% of the overall variance, is

comprised of strong positive contributions from EL, NP,

KE and PPI, large negative contributions from ER and

PGL, and effectively no contribution from GI (figure 2a;

tables 1S and 2S of the electronic supplementary material).



Table 2. Median skewness of expression score distributions in relation to (a) PC1 and PC2 or (b) PC1 and PC3. (Species
abbreviations: Dme, Drosophila melanogaster; Hsa, Homo sapiens; Sce, Saccharomyces cerevisiae.)

(a)

adaptability—bottom 50% adaptability—top 50% p (Mann–Whitney test)

Sce status—bottom 50% 0.29 0.29 0.9486
status—top 50% 0.32 0.44 0.0031

Dme status—bottom 50% 1.82 1.84 0.4072
status—top 50% 1.82 1.90 0.0660

Hsa status—bottom 50% 1.75 1.94 0.0007
status—top 50% 1.87 2.12 0.0000

(b)

reactivity—bottom 50% reactivity—top 50% p (Mann–Whitney test)

Sce status—bottom 50% 0.26 0.31 0.2635
status—top 50% 0.22 0.50 0.0000

Dme status—bottom 50% 1.77 1.88 0.0631
status—top 50% 1.86 1.84 0.8857

Has status—bottom 50% 1.80 1.94 0.0003
status—top 50% 1.86 2.13 0.0000

Table 1. The correlations between the seven genomic variables. (Asterisks denote the correlations that are significantly different
from zero, p!0.05.)

NP PPI GI PGL ER EL KE

NP —
PPI 0.057� —
GI 0.060� 0.034� —
PGL 0.000 K0.125� K0.019 —
ER K0.070� K0.200� 0.034� 0.141� —
EL 0.129� 0.199� K0.050� K0.099� K0.277� —
KE 0.027 0.234� K0.048� K0.181� K0.155� 0.188� —
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PC1 appears to correspond to what may be viewed as a

gene’s status in the genome-wide community of genes.

Indeed, the genes with the high values of PC1 are the

‘high-status’ (most ‘important’) genes—those that cannot

be knocked out without a major effect on fitness, are highly

expressed, occupy a prominent position in the PPI

network, have many paralogues and are evolutionarily

conserved. By contrast, genes with low values of PC1 can

be knocked out at little cost, evolve fast, are, typically,

expressed at a low level and have few (if any) paralogues

and protein–protein interactions, i.e. have a low status.

The next two PCs are associated with statistically

identical eigenvalues, a property known as sphericity (the

p-value of the sphericity test is 0.255; figure 1 and figure

1S of the electronic supplementary material), and there-

fore are defined only up to a rotation in the plane PC2–

PC3. Nevertheless, it seems possible to interpret this plane

as a two-dimensional measure of a gene’s functional and

evolutionary plasticity, and the two PCs (figure 2; table 2S

of the electronic supplementary material) as capturing two

different facets of this plasticity.

The second PC (PC2), which accounted for 15.3% of

the variance, is comprised of positive contributions from

NP and GI, negative contributions from KE and

effectively no contribution from ER, PGL, EL and PPI

(figure 2a; tables 1S and 2S of the electronic
Proc. R. Soc. B (2006)
supplementary material). Thus, PC2 gives high rank to

genes that have many paralogues and often are function-

ally backed-up by other genes (high GI) but are non-

essential (non-lethal upon knockout). We speculated that

these features are associated with genes whose activity is

highly malleable in response to changes in the cellular and

extracellular environments. Under this interpretation, one

would predict that genes with high PC2 values have highly

skewed distributions of ELs under different experimental

conditions, life cycle stages or different tissues of complex

organisms. We tested this prediction by computing the

skewness indices for expression scores obtained at

different stages of the yeast cell cycle, various develop-

mental stages of Drosophila and different human tissues,

and comparing them with the PC2 values (table 2a).

Indeed, the genes with high PC2 values tend to have more

strongly skewed distributions of the ELs, especially those

with high status (high values of PC1), i.e. with the most

important biological roles (Fisher Omnibus test p-values

of 0.01 and much less than 10K20 for low- and high-status

KOGs, respectively, when the combined data for three

organisms were analysed; Bailey & Noble 2003). Thus, we

denoted PC2 gene’s adaptability.

The third principal component (PC3), which accounts

for another 14.5% of the variance (figure 1), is similar to

PC2 in that it favours non-essential genes with many



Table 3. Status, adaptability and reactivity of selected multisubunit complexes and functional classes of proteins. (�Significantly
different from zero (p!0.05), using t-test with Bonferroni correction.)

no. of KOGs average status average adaptability average reactivity

major functional categories

information storage and processing 951 0.553� K0.164� K0.146�

cellular processes and signalling 1216 0.179� 0.201� K0.080�

metabolism 692 K0.057 0.075 0.494�

poorly characterized 1053 K0.669� K0.134� K0.100�

complexes

cytoplasmic ribosome 76 2.679� 0.203 1.226�

mitochondrial ribosome 40 K0.004 K0.527� K0.089
chaperonin complex TCP-1 8 2.237� K0.291 K0.299
spliceosome 50 1.234� K0.511� K0.393�

mRNA cleavage and polyadenylation 10 0.968� K0.609 K0.705
proteasome 33 2.158� K0.547� K0.329�

exosome 12 0.967� K0.660 K0.419
nucleosome 6 1.933 1.875 1.727
vesicle coat complex 19 1.360� K0.496� K0.049
vacuolar HC-ATPase 13 1.696� K0.449 0.345
mitochondrial F0F1-ATP synthase 13 1.110� K0.427 0.083
replication licensing complex 6 1.475� K1.154 K0.046
aminoacyl-tRNA synthetases 33 0.425 K0.478� K0.131
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paralogues. In contrast to adaptability, however, the

contribution of GI to PC3 is strongly negative, the

contributions of ER and PPI are weakly negative, whereas

PGL and EL make substantial positive contributions

(figure 2b; tables 1S and 2S of the electronic supplemen-

tary material). Given that high PC3 values are also

associated with significantly increased skewness of

expression profiles (table 2b; Fisher Omnibus test p-values

of 4!10K4 and much less than 1!10K20 for low- and

high-status KOGs, respectively), we consider PC3 to be

another manifestation of a gene’s ability to adjust to

different functional modes at different life cycle stages or in

different tissues. Thus, we denoted PC3 gene’s ‘reactivity’.
(c) Status, adaptability and reactivity of different

functional classes of genes and multisubunit

complexes

Different functional classes of genes show contrasting

trends in status, adaptability and reactivity distributions.

Although the individual KOGs in each class span a wide

range of values, the group centroids often significantly

differ from zero (table 3 and table 3S of the electronic

supplementary material; see supplementary data of the

electronic supplementary material for the values of status,

adaptability and reactivity for all analysed KOGs).

Information storage and processing systems, as a whole,

are significantly biased toward high status and low

adaptability and reactivity; genes involved in cellular

processes show, on average, relatively high status and the

highest adaptability but low reactivity; genes for metabolic

enzymes and transporters are characterized by moderate

status and adaptability but the highest reactivity; finally,

poorly characterized genes typically fall into the low-status

division, and also show low adaptability and reactivity.

These trends in status, adaptability and reactivity appear

biologically plausible. Thus, the high status of information

processing system components is compatible with the fact

that many of these are central to genome replication and
Proc. R. Soc. B (2006)
expression; the characteristic high adaptability of genes

involved in cellular processes, particularly, signal trans-

duction, might reflect the involvement of these genes in

complex networks of partially redundant pathways; and,

the exceptionally high reactivity of metabolic genes

corresponds to the notion that changes in the levels of

the respective proteins in response to changes in the

availability of metabolites are functionally important and

do not necessarily involve much back-up. Finally, a

curious observation is the distinctly low status of

uncharacterized genes; it seems that the functions of the

‘most important’ eukaryotic genes are already known, at

least in general terms.

Genes whose protein products form multisubunit

molecular complexes usually show strong coherence in

status, adaptability and reactivity, whereas different

complexes, even those with generally similar functions,

may differ dramatically (table 3 and figure 3). Thus,

comparison of cytosolic and mitochondrial ribosomal

proteins shows a clean separation, with the former having

a much higher status than the latter (figure 3a). Indeed,

mitochondrial ribosomes are extremely diverse in different

taxa, and genes coding for mitochondrial ribosomal

proteins evolve fast and are often lost during evolution

(Mears et al. 2002; Koonin et al. 2004; Mushegian 2005).

Complexes with the same intracellular location but

distinct functions often show different, characteristic

status-adaptability patterns. Thus, the vacuolar ATPase

subunits are well separated from those of the vacuolar

sorting complex, the former having a much higher status

and somewhat lower adaptability (figure 3b). A similar

pattern is seen in a comparison of histones and the

replication licensing complex, two chromatin-associated

complexes. The histones have a significantly higher status

and greater adaptability than the licensing complex

subunits (figure 3c), which presumably reflects the key

role of histones and their modifications in chromatin

maintenance and remodelling (Vermaak et al. 2003).
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Figure 3. Status and adaptability of multisubunit complex subunits and functional system components. (a) Cytoplasmic (red)
and mitochondrial (green) ribosomal proteins. (b) Vacuolar ATPase (red) and vacuolar sorting complex (green). (c) Replication
licensing complex (red) and histones (green). (d ) RNA processing and modification. The core cluster, which was delineated by
iterative removal of outliers with Mahalanobis distance exceeding the cut-off corresponding to a p-value of 0.03, is shown by red
circles. The rest of the RNA processing and modification genes are shown by green circles. The blue dots show the rest of the
3912 analysed KOGs.
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Figure 4. Adaptability and reactivity of four functional classes of genes: 1, carbohydrate transport and metabolism; 2, signal
transduction mechanisms; 3, replication, RNA processing and modification; and 4, translation, ribosomal structure and
biogenesis. Ellipses encompass the area of 3 s.d. of the mean for the corresponding KOG sets in the two-dimensional
adaptability (PC2)–reactivity (PC3) space. Blue dots show the rest of the 3912 KOGs.
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Many functional systems show a distinct pattern, with a

dense core of central components of a relatively high status

and low adaptability, and a sparse periphery of more

adaptable, lower-status genes. This pattern is illustrated in

figure 3d for the RNA processing and modification systems.

As a class, these have a relatively high average status and low

adaptability as it is characteristic of information processing

systems in general (table 3 and table 3S of the electronic

supplementary material). However, a closer examination

reveals a tight, high-status–low-adaptability cluster that is

enriched for core subunits of the spliceosome and the
Proc. R. Soc. B (2006)
mRNA cleavage–polyadenylation complex and a scattered

cloud with a significantly lower average status and a wide

range of adaptability values consisting of diverse proteins

involved in various forms of RNA processing and

modification (figure 3d ).

Different functional groups of genes also display distinct

adaptability–reactivity patterns, e.g. low–low for RNA

processing and modification; low–high for translation,

ribosomal structure and biogenesis; high–low for signal

transduction systems; and high–high for carbohydrate

transport and metabolism; figure 4 and table 3S of the
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electronic supplementary material). These patterns might

reflect different functional–evolutionary modalities of these

categories of genes. For example, both the translation

systems components and those of signal transduction

systems are involved in various forms of environmental

response but the latter are characterized by a high level of

functional back-up as opposed to the former.
4. CONCLUSIONS
The analysis described here suggests that the relationships

between phenotypic and evolutionary characteristics of

genes can be meaningfully described with composite

variables (PCs), which seem to reflect the biological role

and ‘importance’ of a gene, and its functional and

evolutionary modes. This is one of the rare cases where

the top PCs appear to be amenable to appealing biological

interpretations. Clustering of genes in the PC space has the

potential to reveal previously unnoticed functional links.

The notion of a gene’s status could have an additional

meaning. Since phenotypic variables contribute positively

to the status and evolutionary variables contribute

negatively, this notion provides a useful generator of null

hypotheses on the sign of the correlations between

variables associated with functioning and evolution of

genes. Any deviation from the expected pattern of

correlation calls for attention—to the quality of the data,

the nature of the analysed relationship, or both.

We thank Sergei Maslov, Dmitry Chklovsky, Mikhail
Gelfand, Alex Kondrashov and members of the Koonin
group for useful discussions.
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